
Cyril Zeller, Director, Developer Technology

NVIDIA’S VISION FOR EXASCALE

2

EXASCALE COMPUTING

1 ExaFlops: a necessity to advance science and technology

Within 20 MW: to mitigate cost of ownership and power delivery
infrastructure

By 2020: based on extrapolation of historical trend

An industry target of 1 ExaFlops within 20 MW by 2020

3

THE PATH TO EXASCALE

An energy efficiency challenge

50 GFlops/W

20202013

Exascale

2 GFlops/W

20 PFlops

10 MW

=

=
1000 PFlops (50x)

20 MW (2x)

25x

4

THE PATH TO EXASCALE

Process will only get us so far

2-5x
from process

(28 nm to 7 nm)

50 GFlops/W

20202013

Exascale

2 GFlops/W

25x

5

THE PATH TO EXASCALE

We must harness energy-efficient architectures

2-5x
from process

(28 nm to 7 nm)

5-12x
from

architecture
and circuit

50 GFlops/W

20202013

Exascale

2 GFlops/W

25x

6

GPU = AN ENERGY-EFFICIENT ARCHITECTURE

CPU

Optimized for latency

(fast processing of single thread)

through speculative, out-of-order

execution and large caches

adding a lot of energy-hungry overheads per

instruction

~400 pJ/flop

Intel Ivy Bridge

GPU

Optimized for throughput

(fast processing of many threads in parallel)

Latency hidden through fine-grain

multithreading

Low overhead per instruction

(no need for speculative, out-of-order

execution and large caches)

~100 pJ/flop

NVIDIA Kepler

7

NVIDIA KEEPS IMPROVING ENERGY EFFICIENCY

2012 20142008 2010 2016

20x

16x

12x

8x

6x

2x

0

4x

10x

14x

18x

Fermi

Kepler

Maxwell

Pascal
flops/W speedups

relative to Tesla’s flops/W
for SGEMM

Tesla

8

WHERE IS THE ENERGY GOING?

Data movement costs more energy than data processing

Large disparity of cost between the various memory levels

20 pJ50 pJ DFMA
SRAM
access

16 nJ
DRAM
access

Data movement energy ratios:

On-chip:

Off-chip:

Off-node:

256-bit
buses

26 pJ

256 pJ

1 nJ

28 nm
chip

Remote SRAM

Local SRAM
= 20x

Local DRAM

Local SRAM
= 320x

Remote DRAM

Local DRAM
= 100x

9

STRATEGY FOR ENERGY REDUCTION

Improve physical locality to minimize data movement cost

First step: stacked memory in 2016 (Pascal architecture)

DRAM integrated into same package as processor

Much shorter interconnect between DRAM and processor

Much wider interfaces to memory for increased DRAM bandwidth

Pascal’s stacked DRAM vs Kepler’s off-package DRAM

4x more energy efficient per bit

4x higher bandwidth (~1 TB/s on Pascal)

3x larger capacity

10

Improve physical locality to minimize data movement cost

Hierarchical register file

To exploit register reuse by caching registers in a small active register file
that is closer to the data processing units

Malleable memory

Configurable on-chip memory to allow for optimal matching to application
needs (register vs cache, hardware-managed vs software-managed cache,
shared vs private, configurable sizes)

RESEARCH AREAS FOR ENERGY REDUCTION

11

SIMT execution model = single instruction fetched, decoded, and
scheduled for a group of threads (aka warp)

Spatial implementation (Kepler): threads execute in parallel across multiple lanes

Caveat: idle lanes when warp diverges (i.e., threads take different execution paths)

Temporal implementation: threads execute sequentially within a single lane

Benefits: no idle lane when warp diverges, scalarization (i.e., execute instruction only
once for threads with same source and destination operands)

Caveat: does not amortize cost of fetch/decode/schedule as well

Explore trade-off between spatial and temporal implementations

Optimize Single-Instruction Multiple-Threads execution model

RESEARCH AREAS FOR ENERGY REDUCTION

12

Low-voltage on-chip memory

Low-swing circuits for on-chip signaling

Ground-referenced signaling for on-package and off-package
communication

Use energy-efficient circuit technologies

RESEARCH AREAS FOR ENERGY REDUCTION

13

EXASCALE NODE

NoC

C0 Cn

TOC0

L20

C0 Cn

TOC0

L20

C0 Cn

TOC0

L20

C0 Cn

TOC0

L20

MC
DRAM

StacksDRAM

Stacks
MC

NIC

L
O

C
 0

L
O

C
 7

L2cpu

NoC/Bus

MC

NVRAM
DRAM

DRAM
DRAM

GPU
Throughput-Optimized Cores

for parallel code

CPU
Latency-Optimized Cores

for serial code (e.g., OS)

NIC
Built for

100K nodes

link

S
y
s
te

m
 In

te
rc

o
n

n
e
c
t

link

Heterogenous

Still need a few
cores optimized for
fast serial work

Three building blocks
(GPU, CPU, NIC) that
can be:

Multiple sockets

Or a Multiple Chip
Module

Or one chip

14

ALL CPU PLATFORMS SUPPORTED TODAY

x86

NVIDIA GPU

ARM64 POWER

15

NVLINK IN 2016

Enables CPUGPU data transfer at speed of CPU memory

High speed interconnect
at 80 to 200 GB/s

GPU

DDR Memory
Stacked

Memory

CPU

NVLink

~100 GB/s

DDR4

~100 GB/s

HBM

~1 TB/s
Planned support for
POWER CPUs

16

EXASCALE SYSTEM

50000+ nodes with petabytes of memory capacity

More susceptible to intermittent failures due to large number of components

Compounded by circuits with narrower voltage/timing for power efficiency

Areas of research for increasing mean time to failure

Circuits that are more tolerant to variations in voltage, temperature, etc.

More vigilant hardware error detection recovery

Application-level fault tolerance (distributed and programmer-guided
checkpointing, error containment domains)

A resilience challenge

17

THE FUTURE OF HPC PROGRAMMING

Massively parallel

Structure applications as throughput problems

Expose all parallelism

By exascale timeframe: 105 threads per GPU, 109 threads per system

Hierarchical

Manage memory placement across the memory hierarchy to expose locality

Heterogoneous

Manage separate memory spaces and concurrent execution of parallel and
serial codes

18

THE PATH TO EXASCALE

Design a development platform that provides:

Portability: allowing programmers to express all available parallelism and
locality independent of targeted hardware

Control: for maximum performance

Productivity: simple programming model, libraries, tools

Find new parallel approaches/algorithms and/or refactor codes

E.g., for existing applications that do not expose enough parallelism

A programming challenge

19

CUDA PROGRAMMING MODEL FOR GPUS
Parallel, hierarchical, heterogeneous

Host Memory Device Memory

Host
(CPU)

Device (GPU)

Grid of Blocks

Block 0

Shared

Memory

Block 1

Shared

Memory

Block N

Shared

Memory

20

CUDA PROGRAMMING MODEL FOR GPUS
Implemented as simple extensions to mainstream languages

(C, C++, Fortran, Python, and others)

void sortfile(FILE *fp, int N) {

char *data = (char*)malloc(N);

char *sorted = (char*)malloc(N);

fread(data, 1, N, fp);

char *d_data, *d_sorted;

cudaMalloc(&d_data, N);

cudaMalloc(&d_sorted, N);

cudaMemcpy(d_data, data, N, ...);

parallel_sort<<< ... >>>(d_sorted, d_data, N);

cudaMemcpy(sorted, d_sorted, N, ...);

cudaFree(d_data);

cudaFree(d_sorted);

use_data(sorted);

free(data); free(sorted);

}

21

CUDA DEVELOPMENT PLATFORM

Programming

Approaches
Libraries

“Drop-in” acceleration

Programming

Languages

OpenACC

Directives

Maximum controlMaximum portability

Development

Environment

Parallel Nsight IDE
Linux, Mac and Windows

GPU Debugging and Profiling

CUDA-GDB debugger

NVIDIA Visual Profiler

Open Compiler

Tool Chain
Enables compiling new languages to CUDA platform, and

CUDA languages to other architectures

Productive tools and higher-level programming approaches

22

GPU-ACCELERATED LIBRARIES
“Drop-in” acceleration

NVIDIA cuFFTNVIDIA cuSPARSENVIDIA cuBLAS

NVIDIA cuRAND

NVIDIA NPP

Vector Signal
Image Processing

Matrix Algebra on
GPU and Multicore

C++ Templated
Parallel Algorithms IMSL Library

GPU Accelerated
Linear Algebra

Building-block
AlgorithmsCenterSpace NMath

http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/thrust/downloads/list

23

OPENACC

Open standard for GPU compiler directives
Simple and portable

main() {

…

<serial code>

…

#pragma acc kernels

{

<compute intensive code>

}

…

}

Compiler
directive

CPU

GPU

24

FUTURE IMPROVEMENTS
TO DEVELOPMENT PLATFORM

Hardware support for CPU-GPU unified memory space

Programming model research

Standardization

25

UNIFIED MEMORY
Explicit CPUGPU memory copies are no longer required

Hardware support in Pascal (2016)

void sortfile(FILE *fp, int N) {

char *data = (char*)malloc(N);

char *sorted = (char*)malloc(N);

fread(data, 1, N, fp);

char *d_data, *d_sorted;

cudaMalloc(&d_data, N);

cudaMalloc(&d_sorted, N);

cudaMemcpy(d_data, data, N, ...);

parallel_sort<<< ... >>>(d_sorted, d_data, N);

cudaMemcpy(sorted, d_sorted, N, ...);

cudaFree(d_data);

cudaFree(d_sorted);

use_data(sorted);

free(data); free(sorted);

}

void sortfile(FILE *fp, int N) {

char *data = (char*)malloc(N);

char *sorted = (char*)malloc(N);

fread(data, 1, N, fp);

parallel_sort<<< ... >>>(sorted, data, N);

cudaDeviceSynchronize();

use_data(sorted);

free(data); free(sorted);

}

26

PROGRAMMING MODEL RESEARCH

Unified model for heterogeneous parallel machines

Single notation for all processors

Language extensions for platform-specific code generation

CUB: highly tuned low-level collective operations (reduce, scan,
sort, etc.)

Portable collection-oriented framework built on top of CUB

Framework for automatically changing the layout of data structures

How should mainstream languages evolve to embrace the
trajectory of hardware?

27

STANDARDIZATION EFFORTS
A standard C++ parallel library

N3960 Technical Specification Working Draft:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf

Prototype:
https://github.com/n3554/n3554

std::vector<int> vec = ...

// previous standard sequential loop
std::for_each(vec.begin(), vec.end(), f);

// explicitly sequential loop
std::for_each(std::seq, vec.begin(), vec.end(), f);

// permitting parallel execution
std::for_each(std::par, vec.begin(), vec.end(), f);

Complete set of parallel primitives:
for_each, sort, reduce, scan, etc.

ISO C++ committee voted unanimously to
accept as official technical specification
working draft

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3960.pdf
https://github.com/n3554/n3554

OpenACC-stndard.org confidential28

Linux GCC Compiler to Support GPU Accelerators

Open Source
GCC Efforts by Samsung & Mentor Graphics

Pervasive Impact
Free to all Linux users

Mainstream
Most Widely Used HPC Compiler

Oscar Hernandez

Oak Ridge National Laboratories

Incorporating OpenACC into GCC is an excellent example of open source and

open standards working together to make accelerated computing broadly

accessible to all Linux developers.

“

”

29

SPREAD PARALLEL PROGRAMMING
AROUND THE WORLD

Foster research in parallel algorithms

700+ university courses

in 62 countries14,000
Institutions with

CUDA developers

2,000,000 CUDA downloads

487,000,000 CUDA GPUs shipped

NVIDIA IN EUROPE

731 staff
580 engaged in engineering R&D
(USA: 4,478 total, 3,070 R&D)

12 offices and 3 HPC labs
(DE, FI, FR, IT, SE, UK, CH)

HPC applications and tools,
bioinformatics, scalable
visualization, mobile platform,
professional graphics

€370 million acquisition and
investment
Icera, Mental Images, Hybrid

NVIDIA IN EUROPE

EXAMPLE CUSTOMERS

Automotive: Audi, JLR, PSA

Medical: Siemens, GE Healthcare,
Philips

Oil and Gas: ENI, Total,
Schlumberger

HPC: CEA, CSCS, Max Planck
Society

Finance: Deutsche Bank,
UniCredit, BNP

NVIDIA IN EUROPE

SAMPLE PROJECTS

Square Kilometer Array Telescope

Human Brain Project

Member of ETP 4 HPC

NVIDIA IN EUROPE

CUDA ACADEMIC PROGRAM

4 CUDA Centers of Excellence

University of Cambridge
University of Oxford
Technical University of Dresden
Barcelona Supercomputing Center

45 CUDA Research Centers

42 CUDA Teaching Centers

3 CUDA Fellows

USA: 9 CCoE, 34 CRC, 70 CTC,
6 CUDA Fellows

34

NVIDIA IS LEADING THE PATH TO EXASCALE

Leveraging 20 years of R&D in parallel computing and 1$B/year of
investment in core GPU technology

Sustainable business model: HPC is an incremental investment

GPU = the most efficient HPC processor today with a large installed base

Fully engaged to meet the energy efficiency, resilience, and
programming challenges of exascale

Building the HPC ecosystem jointly with education, tool, system, and CPU
providers

Partnering with developers to accelerate HPC applications

Advancing processor architecture and circuit technologies, programming models,
and software development platforms through a robust HPC R&D program

