Modelling high energy density supercapacitors by molecular dynamics simulations

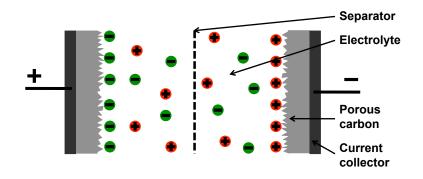
Mathieu Salanne

PHENIX laboratory, Sorbonne University, Paris Network on the electrochemical storage of energy (RS2E) http://www.energie-rs2e.com

Forum Teratec - July 2nd, 2014

Outline

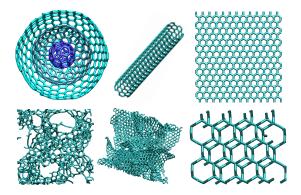
1 Supercapacitors


- 2 Molecular simulations
- 3 Molecular origin of supercapacitance

4 Conclusion

3

< ∃⇒


Supercapacitors: electricity storage devices

- Also called Electrochemical Double Layer Capacitors
- Charge stored through adsorption of ions at the surface of electrode
- No redox reaction in the bulk material \rightarrow different from batteries

•
$$E = \frac{CU^2}{2} \& P = \frac{U}{4R}$$

Electrode materials

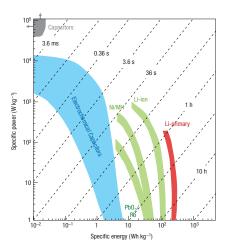
- Commercial devices: carbon materials
- 1D, 2D, 3D materials
- Various porosities, surface area, chemical activation
- Efficiency measured with the capacitance

Simon & Gogotsi, Nature Materials 7, 845 (2008)

M. Salanne (Sorbonne University)

Modelling of supercapacitors

Electrolytes


Need to find a good compromise between:

- Large electrochemical window
- High conductivity
- Good adsorption of ions on (porous) carbon materials
- Toxicity, safety...

Depending on the application:

- Ionic liquids
- Organic electrolytes (acetonitrile + organic salts)
- Aqueous electrolytes (inorganic salts)
- Solid electrolytes (ionic liquids + polymers)

Supercapacitors in the electricity storage landscape

Intermediate performances between conventional capacitors and Li-ion batteries.

- High specific power
- Correct specific energy
- Rapid charge/discharge (a few seconds)
- High cyclability (1 million cycles)

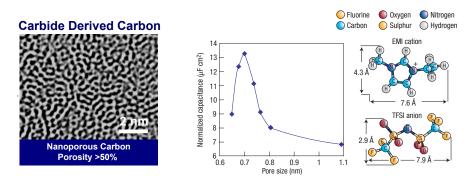
Applications

Collaboration Alstom / Batscap

Tramway in Paris: braking energy is stored in a supercap (allows for a traction of more than 100 m)

M. Salanne (Sorbonne University)

Modelling of supercapacitors


July 2nd, 2014 7 / 27

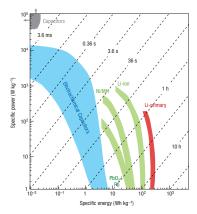
Applications

- Peugeot 308 e-HDI: 5V supercapacitor
- Stop-start system ightarrow lower fuel consumption (-15 %)
- Also in Formula One: KERS

Experimental discovery (Gogotsi & Simon)

- CDC: narrow pore size distribution
- Increase of the capacitance by +50 %!
- Optimum when pore size = ion size

Chmiola et al., Science, 313, 1760 (2006)

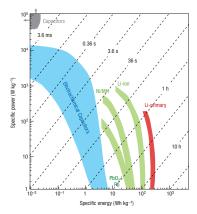

Largeot et al., J. Am. Chem. Soc., 130, 2730 (2008)

Challenges

Need for improvements:

- Increase of capacitance

 → design of new carbon materials
- Electrolytes with high potential window
- Electrolytes with high conductivity at low temperature (-40 $^{\circ}$ C)


Much research work to be done in materials and electrochemistry, but...

Challenges

Need for improvements:

- Increase of capacitance

 → design of new carbon materials
- Electrolytes with high potential window
- Electrolytes with high conductivity at low temperature (-40°C)

Much research work to be done in materials and electrochemistry, but...

- Local structure of the liquid inside the nanopores is unknown
- Very difficult to probe it experimentally
- \rightarrow Simulation can help!

Outline

Supercapacitors

2 Molecular simulations

3 Molecular origin of supercapacitance

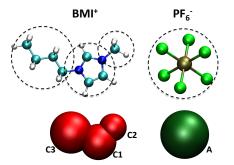
4 Conclusion

3

- 4 回 ト - 4 回 ト

Simulation method: molecular dynamics

- System of N classical atoms/molecules interacting together
- Periodic boundary conditions
- Iterative integration of Newton's equation


$$m^{i}\frac{\partial^{2}\vec{r}^{i}}{\partial t^{2}} = \sum_{j\neq i}\vec{F}^{j\rightarrow i} = -\frac{\partial V}{\partial \vec{r}^{i}}$$

where V is the interaction potential

- Numerical resolution
- Trajectory of the atoms over several nanoseconds
- Determination of structural, thermodynamic and transport properties

Electrolyte: coarse-grained model

- $\begin{array}{l} \mathsf{PF}_6^-: \text{ hexafluorophosphate} \\ & \to 1 \text{ site} \end{array}$

Interaction potential:

$$V = \sum_{i,j>i} \left[4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right) + \frac{q_i q_j}{r_{ij}} \right]$$

Roy & Maroncelli, J. Phys. Chem. B 114, 12629 (2010)

Merlet, Salanne & Rotenberg, J. Phys. Chem. C 116, 7687 (2012)

M. Salanne (Sorbonne University)

Modelling of supercapacitors

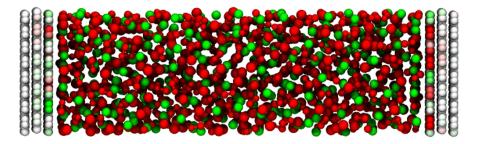


Image: A math a math

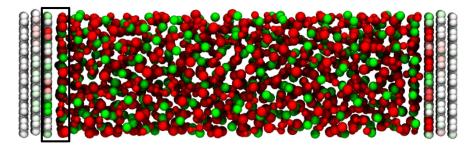
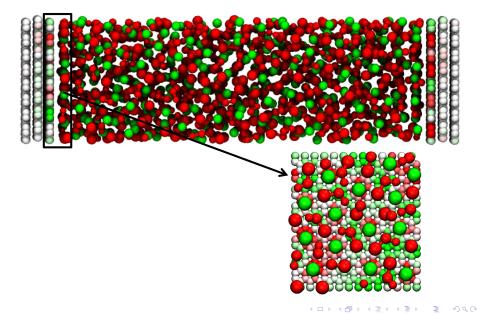
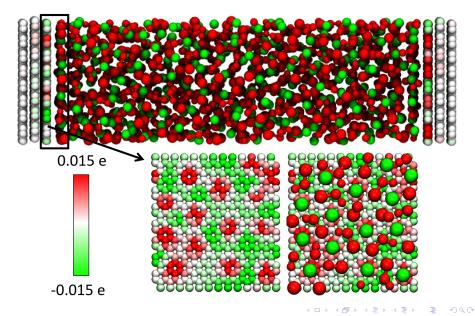
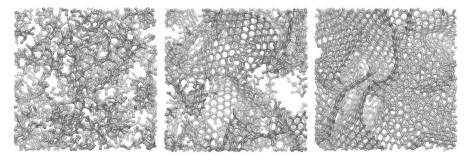





Image: A math a math

Porous electrodes: CDC model structures

- Obtained from quenching a liquid carbon (ReaxFF)
- Different quenching rates: changes in the pore shape and size distribution
- Mimics CDC structures obtained at different temperatures

Palmer et al., Carbon 48, 1116 (2010)

Example of trajectory

Loading movie

Simulation cell with 2-Dimensional periodic boundary conditions

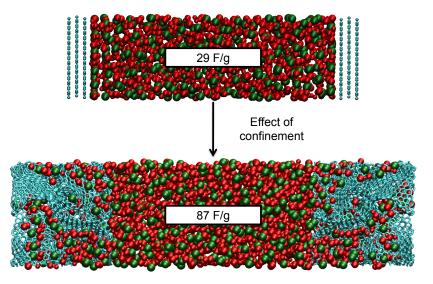
M. Salanne (Sorbonne University)

Modelling of supercapacitors

July 2nd, 2014 16 / 27

3

イロト イポト イヨト イヨ


Outline

- Supercapacitors
- 2 Molecular simulations
- 3 Molecular origin of supercapacitance
 - 4 Conclusion

3

- ∢ ≣ →

Increase of the capacitance in nanoporous carbons

Merlet et al., Nature Materials, 11, 306 (2012)

M. Salanne (Sorbonne University)

Modelling of supercapacitors

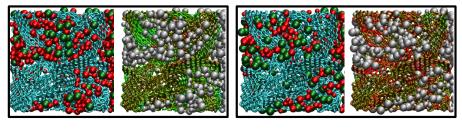
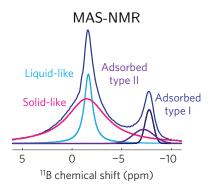

July 2nd, 2014 18 / 27

Image: A match a ma

Superionic state

$$\Psi = -0.5 V$$

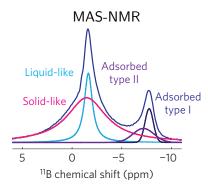
$\Psi = + 0.5 V$

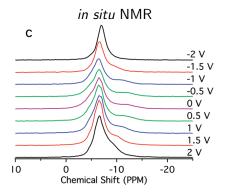


Like-like ions interactions screened by the metallic walls \rightarrow superionic state (Kornyshev)

Merlet et al., Nature Materials, 11, 306 (2012)

• • • • • • • • • • • •

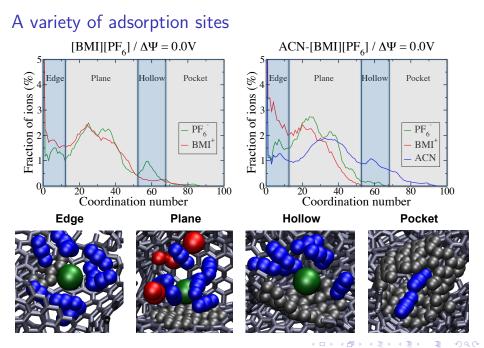

NMR experiments on supercapacitors

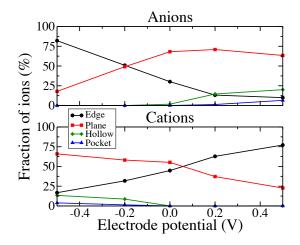


• Several adsorption modes

Deschamps et al., Nature Materials 11, 306 (2013)

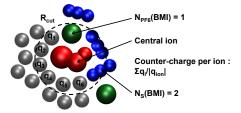
NMR experiments on supercapacitors



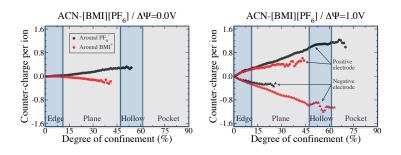

• Several adsorption modes

Evolution with applied potential

Deschamps et al., Nature Materials 11, 306 (2013) Wang et al., J. Am. Chem. Soc. 133, 19270 (2011)

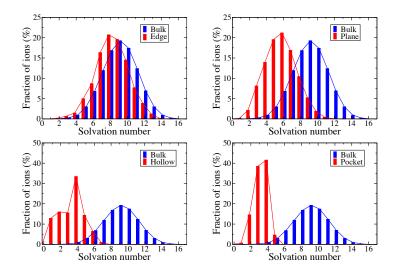


Evolution with applied potential



- Counter-ions migrate in confined sites...
- ... While other ions (and the solvent) leave them

Impact of local morphology on supercapacitor properties



The local charge on the electrode is greater in highly confined sites

Merlet et al., Nature Communications, 4, 2701 (2013)

Desolvation of ions in nanoporous carbons

Merlet et al., Nature Communications, 4, 2701 (2013)

Outline

- Supercapacitors
- 2 Molecular simulations
- 3 Molecular origin of supercapacitance
- 4 Conclusion

3

(本語)と (本語)と (本語)と

Conclusion & Perspectives

- Simulations performed at constant applied potential
- Realistic structures of CDCs
- Nanoporous carbons:
 - -screening by the metallic walls \rightarrow superionic state
 - -absence of overscreening due to confinement \rightarrow better efficiency -role of the local morphology
- Simulations of charge/discharge processes
- Influence of the ionic sizes (development of new models)
- Porous carbon structure (evaluation of new models)
- Ionic liquids dissolved in other solvents

Acknowledgements

- Céline Merlet, Clarisse Péan, Benjamin Rotenberg (PHENIX)
- Paul Madden (Oxford University)
- Patrice Simon (Université Paul Sabatier)
- Yury Gogotsi (Drexel University)
- French National Research Agency
- European Research Council (P. Simon project)
- CINES (project c2013096728)
- PRACE (project 2012071287)