Exascale and Big Data at NERSC

Sudip Dosanjh Director

July 1, 2013

NERSC Overview

NERSC History

Cray T3E Mcurie - 1996

IBM Power3 Seaborg - 2001

1974	Founded at Livermore to support fusion research with a CDC system
1978	Cray 1 installed
1983	Expanded to support today's DOE Office of Science
1986	ESnet established at NERSC
1994	Cray T3D MPP testbed
1994 -	Transitioned users from vector
2000	processing to MPP
1996	Moved to Berkeley Lab
1996	PDSF data intensive computing system
	for nuclear and high energy physics
1999	HPSS becomes mass storage platform
2006	Facility wide filesystem
2010	Collaboration with JGI

NERSC collaborates with computer companies to deploy advanced HPC and data resources

- Hopper (N6) and Cielo (ACES) were the first Cray petascale systems with a Gemini interconnect
- Edison (N7) will be the first Cray petascale system with Intel processors, Aries interconnect and Dragonfly topology (serial #1)
- N8 and Trinity (ACES) are being jointly designed as on-ramps to exascale
- Architected and deployed data platforms including the largest DOE system focused on genomics
- One of the first facility-wide filesystems

We employ experts in high performance computing, computer systems engineering, data, storage and networking

We directly support DOE's science mission

- We are the primary computing facility for DOE Office of Science
- DOE SC allocates the vast majority of the computing and storage resources at NERSC
 - Six program offices allocate their base allocations and they submit proposals for overtargets
 - Deputy Director of Science prioritizes overtarget requests
- Usage shifts as DOE priorities change

We focus on the scientific impact of our users

- 1500 journal publications per year
- 10 journal cover stories per year on average
- Simulations at NERSC were key to two Nobel Prizes (2007 and 2011)
- Supernova 2011fe was caught within hours of its explosion in 2011, and telescopes from around the world were redirected to it the same night
- Data resources and services at NERSC played important roles in two of Science Magazine's Top Ten Breakthroughs of 2012 the discovery of the Higgs boson and the measurement of the Θ_{13} neutrino weak mixing angle
- MIT researchers developed a new approach for desalinating sea water using sheets of graphene, a one-atom-thick form of the element carbon.
 Smithsonian Magazine's fifth "Surprising Scientific Milestone of 2012."
- Four of Science Magazine's insights of the last decade (three in genomics, one related to cosmic microwave background)

We support a broad user base

- 4500 users, and we typically add 350 per year
- Geographically distributed: 47 states as well as multinational projects

We support a diverse workload

- Many codes (600+) and algorithms
- Computing at scale and at high volume

Science

Our operational priority is providing highly available HPC resources backed by exceptional user support

- We maintain a very high availability of resources (>90%)
 - One large HPC system is available at all times to run large-scale simulations and solve high throughput problems
- Our goal is to maximize the productivity of our users
 - One-on-one consulting
 - Training (e.g., webinars)
 - Extensive use of web pages
 - We solve or have a path to solve 80% of user tickets within three business days

Number of NERSC Users and User Tickets Created per Year

NERSC Today

NERSC Systems

	Hopper	Edison	Mira	Titan					
Peak Flops (PF)	1.29	>2.2	10.0	5.26 (CPU) 21.8 (GPU)					
CPU cores	152,408	>100,000	786,432	299,008 (CPU) 18,688 (GPU's)					
Frequency (GHz)	2.1	2.4	1.6	2.2 (CPU) 0.7 (GPU)					
Memory (TB)	217	333	786	598 (CPU) 112 (GPU)					
Memory/node (GB)	32	64	16	32 (CPU) 6 (GPU)					
Memory BW* (TB/s)	331	442	1406	614 (CPU) 3,270 (GPU)					
Memory BW/node* (GB/s)	52	85	29	33 (CPU) 175 (GPU)					
Bisection BW/node (GB/s)	0.5	2.12	0.6	0.8					
Filesystem	2 PB 70 GB/s	6.4 PB 140 GB/s	35 PB 240 GB/s	10 PB 240 GB/s					
Sq ft	1956	1200	~1500	4352					
Power (MW Linpack)	2.91	2.10	3.95	8.21					
* STREAM									

The Computational Research and Theory (CRT) building will be the home for NERSC-8

Four story, 140,000 GSF

- Two 20Ksf office floors, 300 offices
- 20K -> 29Ksf HPC floor
- Mechanical floor
- 42 MW to building, 12.5 initially provisioned
- Natural air conditioning (PUE<1.1)

NERSC-8 Mission Need

The Department of Energy Office of Science requires an HPC system to support the rapidly increasing computational demands of the entire spectrum of DOE SC computational research.

- Provide a significant increase in computational capabilities, at least 10 times the sustained performance of the Hopper system on a set of representative DOE benchmarks
- Delivery in the 2015/2016 time frame
- Provide high bandwidth access to existing data stored by continuing research projects.
- Platform needs to begin to transition users to more energyefficient many-core architectures.

not yet known, trend is toward manycore processors

- Regardless of chip vendor chosen for NERSC-8, users will need to modify applications to achieve performance
- Multiple levels of code modification may be necessary
 - Expose more on-node parallelism in applications
 - Increase application vectorization capabilities
 - locality directives must be

Forecasting

Requirements with six program offices

- Reviews with six program offices every three years
- Program managers invite representative set of users (typically represent >50% of usage)
- Identify science goals and representative use cases
- Based on use cases, work with users to estimate requirements
- Re-scale estimates to account for users not at the meeting (based on current usage)
- Aggregate results across the six offices
- Validate against information from indepth collaborations, NERSC User Group meetings, user surveys

Tends to underestimate need because we are missing future users

Keeping up with user needs will be a challenge

Computing at NERSC

Keeping up with user needs will be a challenge (cont.)

Office of Science Production Computing

Future archival storage needs

Exponentially increasing data traffic

NERSC users import more data than they export!

DOE experimental facilities are also facing extreme data challenges

- The observational dataset for the Large Synoptic Survey Telescope will be ~100 PB
- The Daya Bay project will require simulations which will use over
 128 PB of aggregate memory

- By 2017 ATLAS/CMS will have generated 190 PB
- Light Source Data Projections:
 - 2009: 65 TB/yr
 - 2011: 312 TB/yr
 - 2013: 1.9 PB /yr
 - EB in 2021?
 - NGLS is expected to generate data at a terabit per second

Computing Challenges

Laws of Physics will Halt Moore's Law

High-performance Logic Technology Requirements (ITRS 2011)

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020
Gate Length	22	20	18	17	15.3	14	12.8	11.7	10.6
Equivalent Oxide Thickness		•	•	•	•	•	•	•	•
Source-Drain Leakage	•	•	•	•	•	•	•	•	•
Threshold Voltage	•	•	•			•	•	•	•
CV/I Intrinsic Delay		•	•	•	0	•	•	•	•
Total Gate Capacitance	•	•	•	•	•			•	•
Drive Current	•	•	•			•	•	•	

- Time line shown for best performing multi-gate transistor technology.
- Similar timelines exist for other functional components; e.g., memory, RF logic.

- technology available
- solutions known
- no known solutions

Clock speeds are expected to stay near 1 GHz

Concurrency is one key ingredient in getting to exaflop/sec

Future gains in supercomputing will be limited by power

Performance Projections - 20MW

Where does the energy go?

Both memory capacity and bandwidth are significant issues for DOE applications

design forward to tackle challenges

- Bridge to Exascale Initiative, 2 year funding
- Influence industry roadmaps to address DOE extreme-scale computing challenges
- Fast forward (RFP released by LLNL)
 - Processor, memory, storage
 - AMD, IBM, Intel, Nvidia
- Design forward (RFP released by Berkeley Lab)
 - System design and integration
 - Interconnects

NERSC Strategy

Strategic Objectives

- Meet the ever-growing computing and data needs of our users by
 - providing usable exascale computing and storage systems
 - transitioning SC codes to execute effectively on manycore architectures
 - influencing the computer industry to ensure that future systems meet the mission needs of SC
- Increase the productivity, usability, and impact of DOE's user facilities by providing comprehensive data systems and services to store, analyze, manage, and share data from those facilities

Unique data-centric resources will be needed

Compute Intensive Arch

Data Intensive Arch

Compute

On-Package DRAM

Capacity Memory

On-node-Storage

In-Rack Storage

Interconnect

Global Shared
Disk

Off-System
Network

Goal: Maximum
computational density and
local bandwidth for given
power/cost constraint.

Maximizes bandwidth density near compute

Goal: Maximum data capacity and global bandwidth for given power/cost constraint.

Bring more storage capacity near compute (or conversely embed more compute into the storage).

Requires software and programming environment support for such a paradigm shift

Direct from each node

- 34 -

NERSC System Plan

Projections of Installed Capacity

