Simulation numérique: l'atout majeur de l'innovation dans la chimie et les polymères

David Silagy

Directeur R&D des Polymères Techniques et du CERDATO ARKEMA, Serquigny, France

PLAN DE L'EXPOSÉ

- I. Arkema en 2012
- II. La modélisation chez Arkema
- III. Les enjeux du Calcul Haute Performance dans l'industrie chimique (HPC)
- IV. Exemples illustratifs de nos besoins en HPC

Arkema en bref

- Acteur mondial de la chimie de spécialités
- Positions de nº 1 à nº 3 mondial sur ses principaux métiers
- Chiffre d'affaires 2011 : 5,9 Md€
- 9 centres de recherche
- 84 sites industriels
- 13 200 salariés

Un bon équilibre par région

33 % du CA*

30 usines 2 centres de R&D 18 % des effectifs

Europe

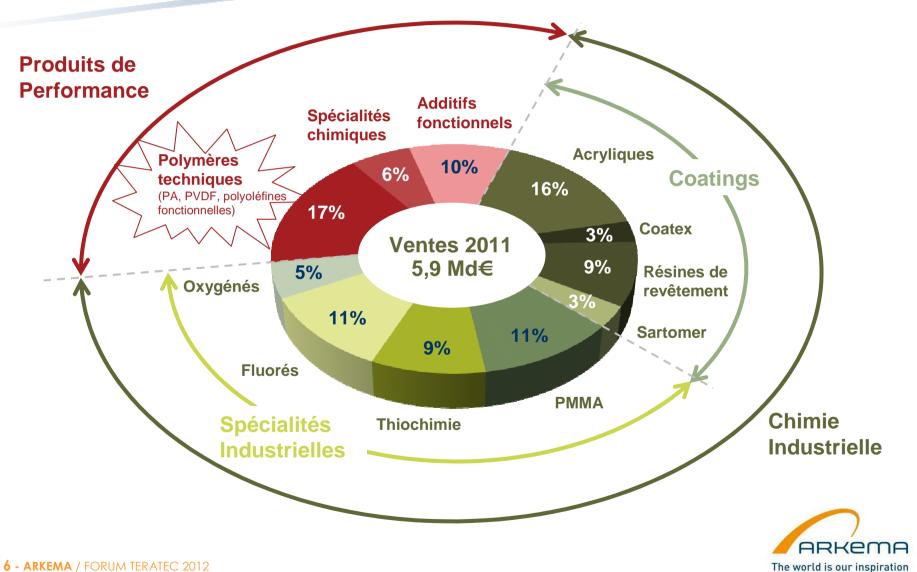
41 % du CA*

40 usines 6 centres de R&D 70 % des effectifs

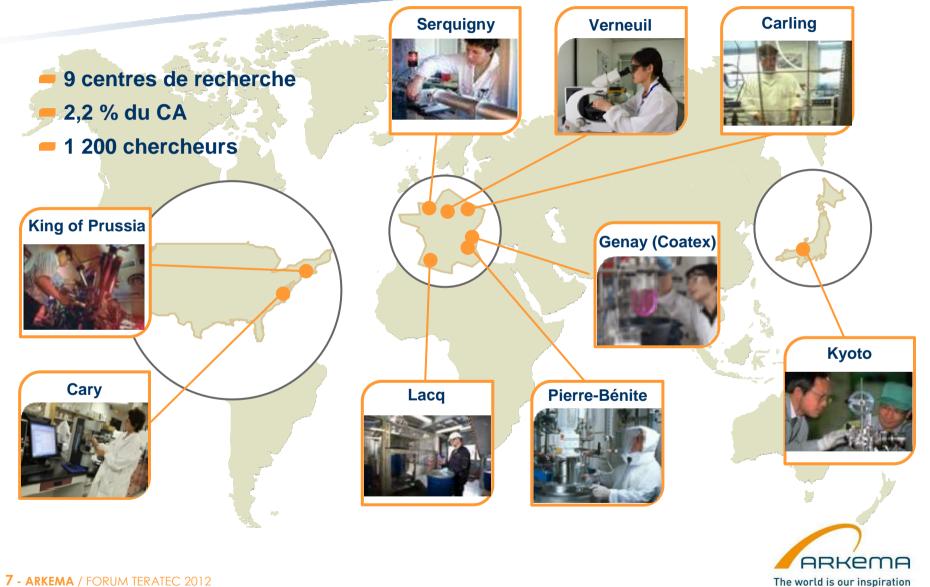
Reste du monde

5 % du CA*

1 usine
1 % des effectifs


Asie

21 % du CA*


13 usines 1 centre de R&D 11 % des effectifs

Un bon équilibre par activité

L'innovation au cœur de la stratégie

Une innovation dédiée au développement durable

Nouvelles Energies

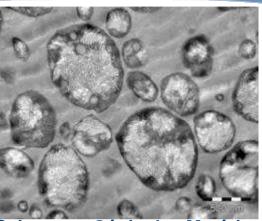
Matériaux Biosourcés

Gestion de l'Eau

Allégement

La modélisation au service d'Arkema

Eco-conception des Matériaux


Procédés de Polymérisation

Modélisation et simulation des réactions Modélisation et simulation des écoulements Contrôle en ligne des procédés

Formulation

Modélisation et simulation des écoulements

Science et Génie des Matériaux

Propriétés des substances

Transformation - Plasturgie

Modélisation et simulation des écoulements

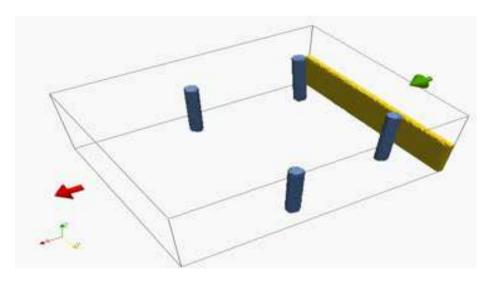
10 - ARKEMA / FORUM TERATEC 2012

Le rôle de la modélisation

Outil d'aide à la décision. Objectifs visés:

- Apporter un support technique à nos équipes de développement et de procédés dans les domaines de
 - La CFD / Mélange dans nos réacteurs
 - L'extrusion (monovis, bi-vis,...)
 - Les technologies de transformation (polymères renforcés fibres courtes ou longues, injection, dimensionnement de structures tubulaires multicouches,...)

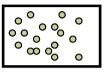
en utilisant une approche numérique et expérimentale


- Gagner du temps et de l'argent
 - Réduire la méthodologie essai-erreur
 - Valider ou préciser les exigences techniques
 - Anticiper les problèmes au dégoulottage
 - Améliorer la précision de la réponse technique
- Développer nos connaissances et notre compréhension

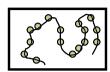
La modélisation dans l'industrie chimique

Des processus physico-chimiques complexes...

- Rhéologie non newtonienne
- Ecoulements multiphasiques
- Polydispersion
- Milieux réactionnels
- Phénomènes interfaciaux
- Matériaux composites
- Chimie moléculaire
- Géométries complexes
- and many more...!!!



Une Modélisation Simple et Efficace: le contrôle en ligne des procédés de polymérisation


Le contrôle ex-post de la polymérisation est cher, tardif et imparfait

approche spectroscopique

polymérisation

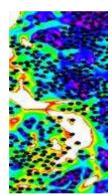
vibrationnelle sur base NIR

obtention d'un signal en ligne avec « signature » du produit très riche: humidité, avancée de la réaction, terminaison moléculaire, rigidité...

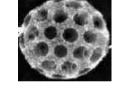
Construction d'un modèle de corrélation qui permet de corréler une signature vibrationnelle / numérique avec une propriété

Le calcul numérique permet de transformer une mesure en un panel de propriété

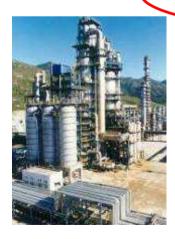
Les polymères: un problème d'échelles!

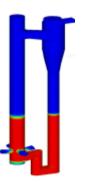


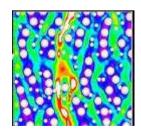
Nos produits sont multi-échelles...


Notre conception est multi-échelles...

Notre analyse est multi-échelles...






Notre modélisation doit l'être aussi!

Paradigme HPC

Le design sous le prisme du scale-up

Design scale-up

Laboratoire

Pilote

Usine

La modélisation doit assister ce dimensionnement

→ ressources informatiques croissantes

Nécessité du HPC

L'analyse sous le prisme du scale-up

Notre métier va de la synthèse d'un polymère jusqu'à sa mise en forme en produits applicatifs

→ Le spectre de notre analyse scientifique est intrinsèquement multi-échelles

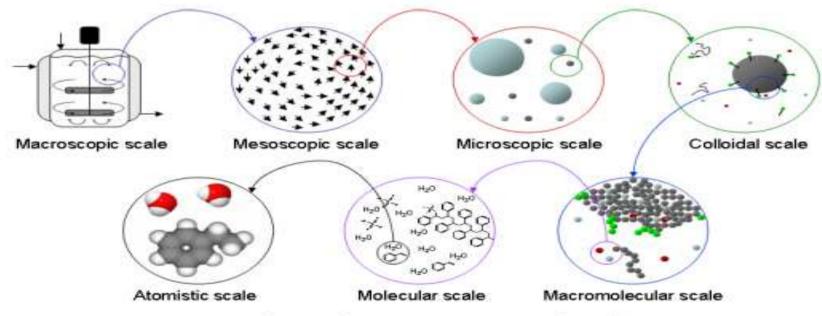
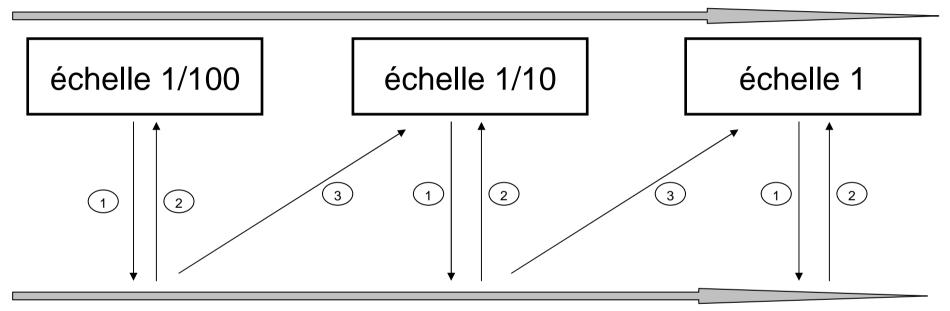


Figure 1.1 Emulsion polymerization as a multi-scale process

La modélisation multi-échelle

Pour répondre aux exigences de l'analyse multi-échelles, la simulation doit s'adapter... plus le niveau de détail augmente, plus les besoins informatiques deviennent prioritaires


Modèle macroscopique Modèle mésoscopique Direct Numerical Simulation (DNS)

Paradigme HPC indispensable

Le HPC comme outil de certification

Scale-up (analyse/design)

Modélisation

1: acquisition

2:optimisation

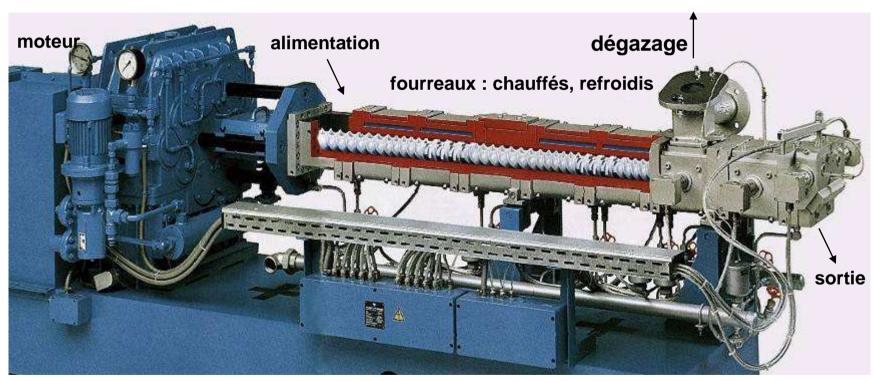
3: prédiction

Son rôle important impose un impératif de certification

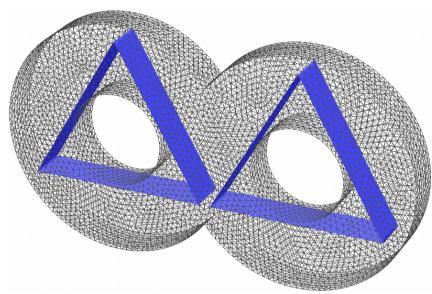
Certification: « uncertainty management »

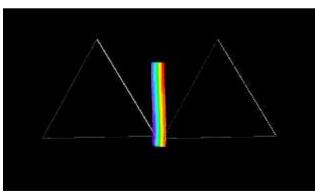
Quantifier les erreurs, valider les résultats

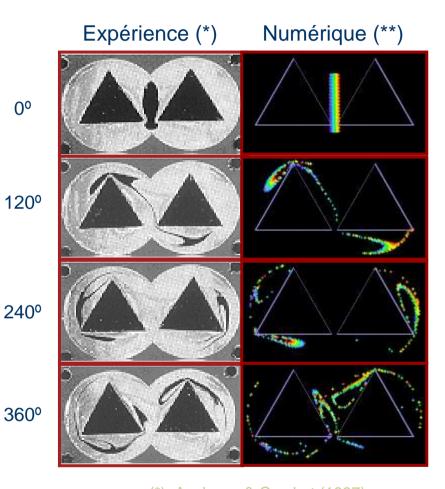
La validation est <u>partie intégrante</u> du processus de modélisation. Elle se fait par confrontation expérimentale et « convergence en maillage ». Les besoins en ressources informatiques sont énormes.


Le paradigme HPC est notre moyen de mise en œuvre

Compoundage et extrusion réactive.


Besoin de maîtriser le procédé et la chimie



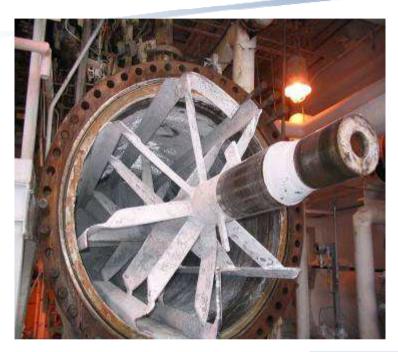


Modélisation de la dispersion de charge

Maillage ~500 000 éléments

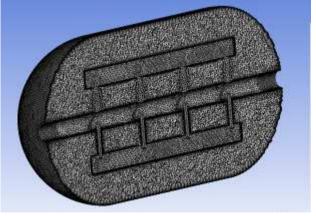
(*): Avalosse & Crochet (1997) (**): Giguère (2004)

Perspectives


Actuellement:

- Simulation 3D d'un élément de vis
- Précision limitée (effets de cisaillement important → nécessité d'adapter nos maillages)

Ambitions:


- Modéliser fidèlement l'ensemble de l'extrudeuse.
- Passer des simulations à plusieurs centaines de millions d'éléments.
- En Pratique: un gain de 30% de productivité sur une extrudeuse sans aucun investissement!

Polymérisation en émulsion

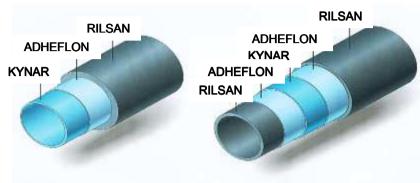
Modélisation 3D multiphasique de l'écoulement

Maillage de 4 millions de nœuds

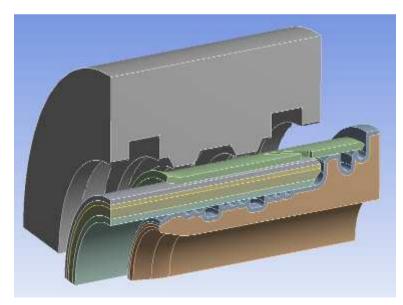
25 - ARKEMA / FORUM TERATEC 2012

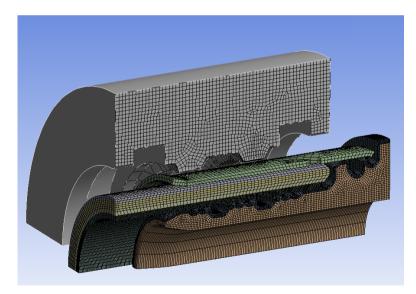
Perspectives

Actuellement:


- Echelle macro : taille des gouttes << taille de maille
- Pas de description de la cinétique réactionnelle

Ambitions:


- Passage à l'échelle méso: prise en compte de la polydispersion
- Passage à l'échelle micro: prise en compte de la chimie de polymérisation


Calcul mécanique de structure multicouches

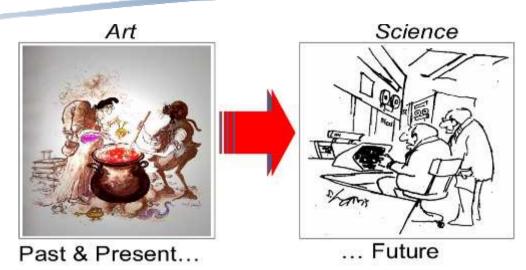
Exemples de structure multicouches

Structure multimatériaux

Maillage de 1,5 millions de nœuds

Perspectives

Actuellement:


- Géométrie simplifiée
- Modèles élasto-plastiques

Ambitions:

- Considérer la géométrie complète de la structure
- Modèles élasto-visco-plastiques, modèles de rupture, endommagement,...

Conclusions

- Arkema met la modélisation au cœur de son métier à toutes les étapes de la conception
 - Contrôle en ligne
 - Ecoulements dans les réacteurs et les extrudeuses
 - Prédiction des propriétés pour l'eco-conception des Matériaux
- Le HPC est l'outil indispensable de mise en œuvre

