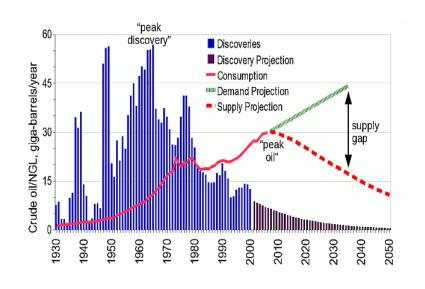


# CGG – TERATEC HPC HACKATON - ARM

Introduction to seismic imaging and stencil's algorithm



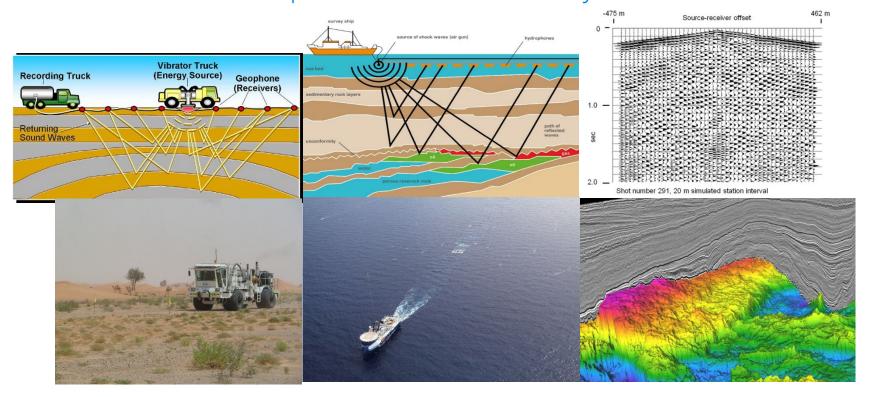



# SEISMIC IMAGING



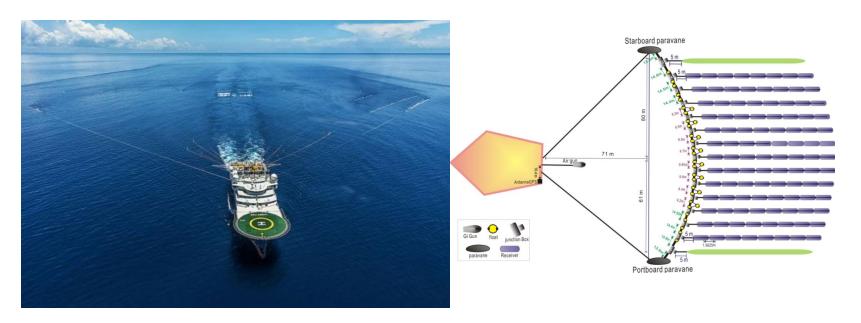
# Why seismic imaging is needed?






**Necessity is the mother of inventions** 

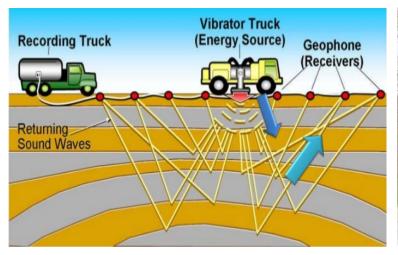
HPC is a fundamental tool to help to improve discovery, minimize cost and risks. Drilling price = 10x Seismic exploration and imaging price




# Land and Marine acquisition: seismic surveys






# Offshore acquisition



Because of the length of the cables (approx. 10km), the boat can't stop easily!

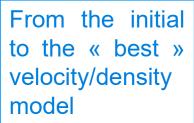


# Onshore acquisition








#### What is seismic IMAGING?



2

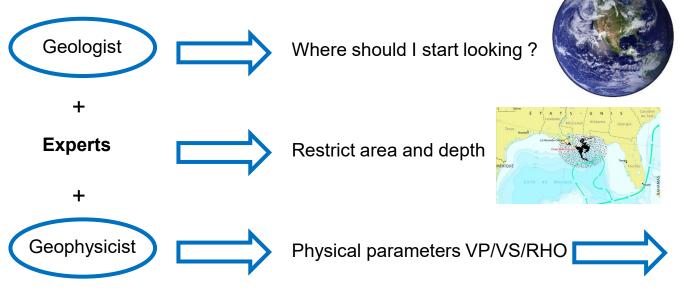
Data acquisition: seismic surveys

Initial velocity/density model





Inversion algorithms FWI, RTM…



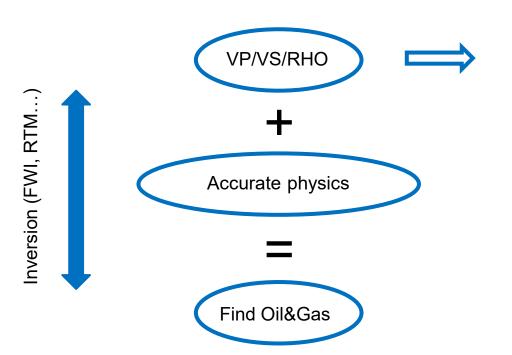



« Best » velocity/density model



### Initial Velocity Model Building




Deepwater horizon (BP)

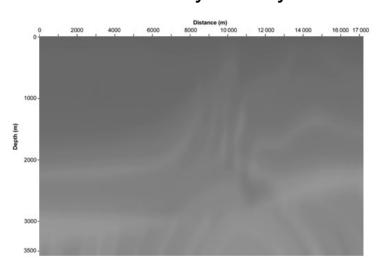
:
Water depth: 1259
meters
Vertical drilling depth:
10685 meters

Initial velocity/density model

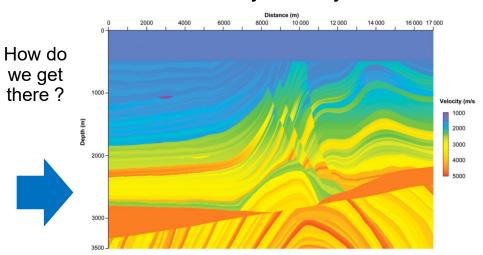


# Why do I need an accurate velocity/density model?




| Type of formation                 | P wave    | S wave    | Density              | Density of             |
|-----------------------------------|-----------|-----------|----------------------|------------------------|
|                                   | velocity  | velocity  | (g/cm <sup>3</sup> ) | constituent            |
|                                   | (m/s)     | (m/s)     |                      | crystal                |
|                                   |           |           |                      | (g/cm <sup>3</sup> )   |
| Scree, vegetal soil               | 300-700   | 100-300   | 1.7-2.4              | -                      |
| Dry sands                         | 400-1200  | 100-500   | 1.5-1.7              | 2.65 quartz            |
| Wet sands                         | 1500-2000 | 400-600   | 1.9-2.1              | 2.65 quarta            |
| Saturated shales and clays        | 1100-2500 | 200-800   | 2.0-2.4              | -                      |
| Marls                             | 2000-3000 | 750-1500  | 2.1-2.6              | -                      |
| Saturated shale and sand sections | 1500-2200 | 500-750   | 2.1-2.4              | -                      |
| Porous and saturated sandstones   | 2000-3500 | 800-1800  | 2.1-2.4              | 2.65 quart             |
| Limestones                        | 3500-6000 | 2000-3300 | 2.4-2.7              | 2.71 calcit            |
| Chalk                             | 2300-2600 | 1100-1300 | 1.8-3.1              | 2.71 calcit            |
| Salt                              | 4500-5500 | 2500-3100 | 2.1-2.3              | 2.1 halite             |
| Anhydrite                         | 4000-5500 | 2200-3100 | 2.9-3.0              | -                      |
| Dolomite                          | 3500-6500 | 1900-3600 | 2.5-2.9              | (Ca, Mg)               |
|                                   |           |           |                      | CO <sub>3</sub> 2.8-2. |
| Granite                           | 4500-6000 | 2500-3300 | 2.5-2.7              | -                      |
| Basalt                            | 5000-6000 | 2800-3400 | 2.7-3.1              | -                      |
| Gneiss                            | 4400-5200 | 2700-3200 | 2.5-2.7              | -                      |
| Coal                              | 2200-2700 | 1000-1400 | 1.3-1.8              | -                      |
| Water                             | 1450-1500 | -         | 1.0                  | -                      |
| Ice                               | 3400-3800 | 1700-1900 | 0.9                  | -                      |
| Oil                               | 1200-1250 | -         | 0.6-0.9              | -                      |

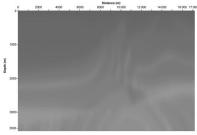
Tell me your speed and I will tell you who you are...



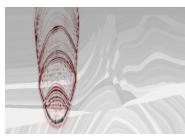

## Real vs Initial velocity/density model

#### Initial velocity/density model



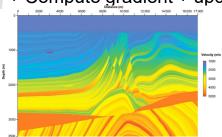

#### Real velocity/density model





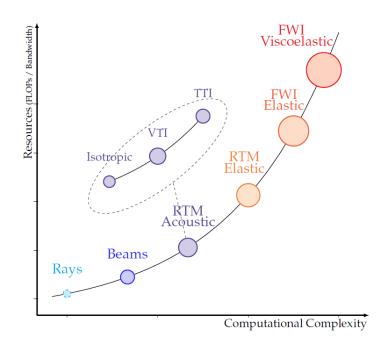

#### Inversion algorithms FWI, RTM...

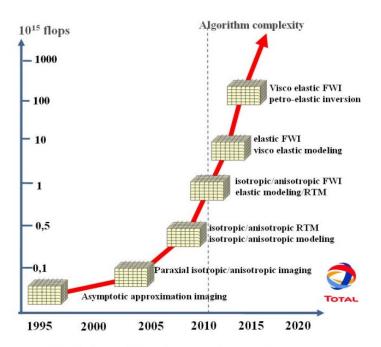
#### Start with initial velocity/density model




#### Propagate waves and record data « numerically »




Compute differences between data acquisition (surveys) and numerical data


+ Compute gradient + update velocity/density model



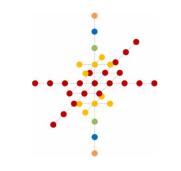


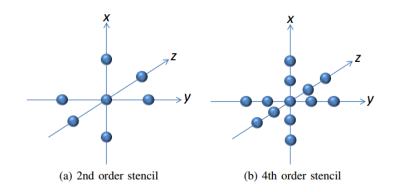
## Exponential increase in compute required!

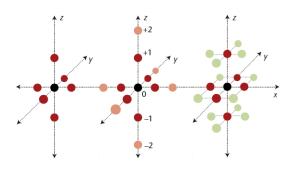




Algorithmic complexity and corresponding computing power





# STENCIL




# Stencil operators

| Stencil Order | Extent                | Memory Accesses/Elem. | Flops/Elem. |
|---------------|-----------------------|-----------------------|-------------|
| 2             | 3×3×3                 | 8                     | 8           |
| 4             | 5×5×5                 | 14                    | 15          |
| 6             | 7×7×7                 | 20                    | 22          |
| 8             | $9 \times 9 \times 9$ | 26                    | 29          |
| 10            | 11×11×11              | 32                    | 36          |
| 12            | 13×13×13              | 38                    | 43          |







Stencils are workhorse in many HPC kernels, dominant in seismic industry



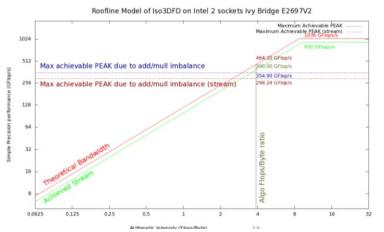
### Pseudocode and modeling of a kernel

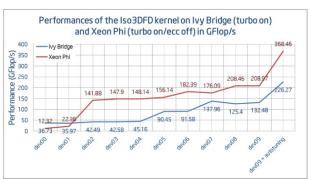
```
timesteps=1..1000
nz=1..800
ñV=1..1200
                                                                                           never used () before (compulsory)
nx=1...1600
order=2

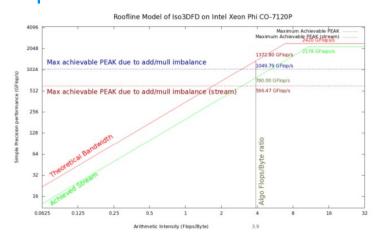
    for previous plane

float S[nx,ny,nz]
                    // Source
                                     array

    for previous line


float D[nx,ny,nz]
                    // Destination
                                    array
float C[nx.nv.nz]
                    // coefficients array


    for previous element


for t in [1..timesteps]
        for z in [order+1..nz-order]
                for y in [order+1..ny-order]
                        for x in [order+1..nx-order]
                                                                 ]*coeff1 + S[ x+2 , y
                                                                 ]*coeff1 + 5[ x-2 , y
                                                                 ]°coeff0 + C[ x
                                     13 MUL SP + 13 ADD SP ; can use 13 FMA
                                     if well implemented only RED is compulsory then comes from DRAM
                                 // Green and Blue come from recent accesses; L1+L2 and LLC if large enough
                 endfor v
        endfor z
        swap (S&.D&)
endfor t
    per point : 26 flops ; 4 bytes C ; 4 bytes S ; 4 bytes D = 16 bytes on DRAM bus : 11 streams
    kernel is memory bound; flops/bytes ratio = 26/12 = 2.2
```

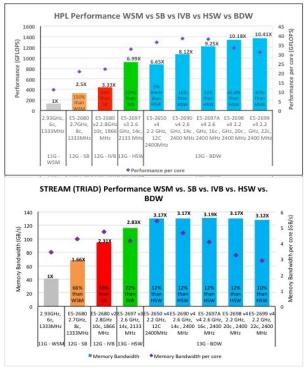


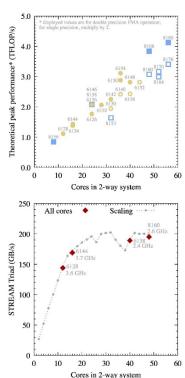
#### Roofline model and academic experiments

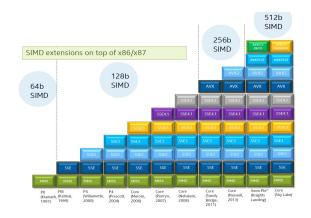







IVY : peak 1036 GFlops : effective 226 Gflops
Ratio peak/effective = 5 = 20% efficiency
KNC : peak 2420 Gflops : effective 368 Gflops
Ratio peak/effective = 6.6 = 15% efficiency
Stencils are memory bound


http://www.techenablement.com/characterizationoptimization-methodology-applied-stencil-computations/

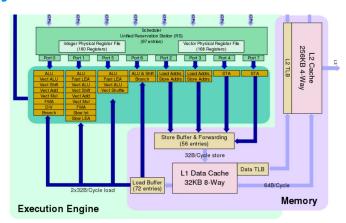



#### Trend in Gflops and Bandwidth of latest Xeon

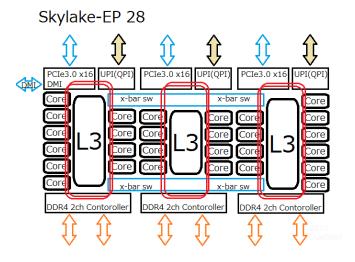
#### Memory bandwidth vs Gflops imbalance continue to grow








| Names                | Memory Clock | I/O Bus Clock | Transfer Rate | Theoretical Bandwidth |
|----------------------|--------------|---------------|---------------|-----------------------|
| DDR-200, PC-1600     | 100 MHz      | 100 MHz       | 0.2 GT/s      | 1.6 GB/s              |
| DDR2-800, PC2-6400   | 200 MHz      | 400 MHz       | 0.8 GT/s      | 6.4 GB/s              |
| DDR3-1600, PC3-12800 | 200 MHz      | 800 MHz       | 1.6 GT/s      | 12.8 GB/s             |
| DDR4-3200, PC4-25600 | 400 MHz      | 1600 MHz      | 3.2 GT/s      | 25.6 GB/s             |


https://colfaxresearch.com/xeon-2017/



#### Skylake socket



AVX 512 = 2 FMA/cycle = 64 SP/cycle 28 cores = 2.6 Tflops SP at 2.0Ghz L1 and L2 can deliver 128 GB/s at 2.0 Ghz



Bandwidth DRAM = 64bits\*2400MTS\*6channels/8bits

Effective 90% ~ 100 GB/s per SOCKet

Need 26 flops per byte to cover the memory bandwidth

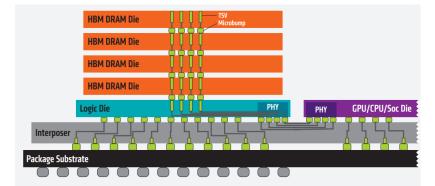


#### Options for multicores architectures

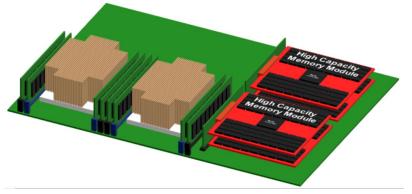
#### DDR4/3 3200Mbps x16 - 1024-bit x72-bits 1-4 Ranks architecture

DFI 4.0

# HBM2


- 2000Mbps
- 2.5D design

#### HBM3


- Expected 4000Mbps
- Complex design architectures

#### DDR5

 Expected 4800 -6400Mbps



- DDR5 and 8 channels per SOC will deliver 250GB/s/SOC
- HBM2 can deliver 300GB/S per stack
- HBM3 can deliver 500GB/s per stack
- High capacity with SCM
- O&G need
  - High bandwidth to cover flops
  - High capacity for IO in memory





# Thank you, and good luck for ARM porting!