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Smart-Charging of Electrical
Vehicles



Smart-Charging

Technologies that aim at optimizing charges/discharges of electrical vehicles

« V1G » : form grid to vehicle
* Power is delivered in an unidirectional manner from grid to vehicle, to charge its battery

Vehicle To Grid (« V2G ») : in both ways

* Energy stored in accumulators can also serve to power a building, or to regulate the grid

Many constraints here !

* The high level of power required to load electrical vehicles, especially on fast load stations, compels
to optimally modulate the load demand in time

* While satisfying needs of users, charging/discharging cycles of batteries, limits on available power
delivered by the grid, reserves required to guaranty frequency stability, etc.
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Smart-Charging

https://les-smartgrids.fr/dreev-edf-smart-charging-v2g/
How V2G Works , |
Some figures :
EDF ambition in Europe :
E SR L ETUIL RN il i PPN - 4 000 smart load-stations
installed in 2020
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n' » % Il 1.5 million of vehicles with a

- smart piloted load in 2035

Many difficult optimisation problems there :
When do we have to charge vehicles ? How many load stations do we need ? ...
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From smart-charging problems to
graph-theory problems

thanks to an old and fruitful field of Operational Research : scheduling
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Scheduling

J={1...n}jobs to execute on | = {1...m} machines
* At agiven time step, one job performs on a single machine and a machine can only execute a single job

A scheduling problem is described by a triplet : a|B |y

(Graham and Lawler classification [Graham Lawler et al 79])
* «a:machine environment : single/multiple, parallel, uniform ...
* [:job characteristics : splitting (pre-emption) allowed or not, resource or precedence constraints, due dates ...
* y:criteria to be minimized : total completion time, global makespan, lateness ...

Examples
* 1|prec|Lmax : minimise maximum lateness on a single machine, subject to precedence constraints on the jobs
* R|pmtn|3C; : minimise the total completion time on a variable number of unrelated machines, allowing pre-emption

A huge bunch of applications ...

* Manufacturing industry (job shop scheduling), logistics (timetables, project scheduling), transport (fleet and crew
management), computing (jobs scheduling on parallel machines, cloud management ...)

* ... and around sixty years of researches on the subject !
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604 E Complexity Classification of Deterministic Scheduling Problems

SINGLE MACHINE PARALLEL MACHINES SHOPS
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Scheduling

* CompleXIty SINGLE MACHINE PARALLEL MACHINES SHOPS

* NP : problems for which no o
polynomial algorithm is L s ¥ 021 prme |26
known, but such that a O3 || Crnax '
solution can be verified in Mt ) O3 | prmp | 2 w;U;
polynomial time Pm | prmp | 32 w;C;

* NP-Hard : problems to which Qm || X w;C; (*)
any problem in NP can be R |75 | Coa (%)
reduced in polynomial time Rm | X w;U; (%)

* NP-Complete : NP-Hard et
prOblemS In NP ‘ Table E.2 NP-Hard Problems in the Ordinary Sense

[Pineddo 2008]
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Scheduling

e Avery (very) large number of conventional algorithms are available

* Exactin the (pseudo-LponnomiaI case (e.fg. dynamic programming), or for reduced instances in
strong NP (e.g. Branch&Bound for linear formulations)

* Approximate : based on linear or semi-definite positive relaxations

* Probabilistic, in general in BPP (Bounded-error Probabilistic Polynomial time) : probability of success
> 2/3, probability of fail <1/3

* Heuristic : greedy algorithms, genetic algorithms, local search, constraint programming...

 What about quantum algorithms?

* Well, to begin, they’ll have to challenge the above dream team of conventional algorithms !
* Grover : quadratic speedup on any problem in NP with respect to a “brute force” exhaustive search

e Many scheduling problems can be formulated as Binary Quadratic Optimisation Problems (QUBO)
= Quantum Annealing (QA), Quantum Adiabatic Computing (QAA) and Quantum Approximate
Optimisation Algorithm (QAOA ) are good candidates

* Scheduling is often a matter of graphs ...
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From smart-charging problems to graph-
theory problems

Minimization of total charging time =» Max-Cut

Minimization of the number of charging stations=2 Max Independent Set
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Minimization of total charging time

Modelling

 J={1 ... n}jobs of charge of n electrical vehicles, on a set | = {1...m} of
« parallel » charge stations

* The completion time of a load j is noted C,. We try to minimize the
total time of completion of the charges Z]-E] w;C;, where w;

represents a non-negative integer weight associated with job j
measuring its importance/priority

* For example, we want to prioritize the charge of safety-related intervention
vehicles.

* In standard scheduling notation, thisis : P, | |Zj€] w; C;

L]
:;"EDF 14/11/2019, TERATEC QUANTUM COMPUTING INITIATIVE M Porcheron EDF-R&D 13



L]
* TEeDF

Minimization of total charging time

Hypotheses

* Each load must be run on a station and can be on any of them, and a

station can only perform one charge at a time

Stations are considered identical : the charging duration p; of vehicle j on
station i is the same whatever the station is, i.e. p;=p;

We neglect possible resource constraints (maximum number of charging
stations operating in parallel, maximum number of loads performed by a
station, for example) and "early or late date" constraints on the completion
of the load jobs

Load tasks are considered non-preemptive, i.e. can not be interrupted to be
resumed later.
e That is to say that a charge is entirely performed on the same station, without being

interrupted.
* Note that1problems without preemption are generally more difficult than with (less
degrees of freedom)
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Minimization of total charging time

Complexity

e 1] IZ]-E] w;C; : problem with one machine (and its derivatives) can be solved in
n.log(n)

* Smith’s Rule : schedule jobs in non-increasing order of W/pj. Intuitively, this amounts to
postponing the longest jobs at the latest (weighting the duration by the priority w)); this
avoids accumulating their durations in the sum of the completion times of the others

*P_| |Z]-E] C; : problem with m identical parallel machines and w; = 1, i.e. no

"priority" on the jobs, can also be solved in n.log(n) by a generalization of the
Smith’s rule above
¢ Pml IZ]E]W]C] : NP-Hard !

 Numerous classical approximation algorithms based on relaxations of the IP or SDP
formulations, and on various (meta-)heuristics
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Minimization of total charging time

Reduction to Max-Cut problems

* We notice that once the jobs are assigned to the machines, the optimal
scheduling consists of scheduling the jobs on each machine according to the
non-decreasing order given by pj/wj

* Thus, the optimal order to apply in any solution may be predetermined :
k< jiffk #jandP*/y, <"/,

* If k <j and k andj are assigned to the same machine, then k will necessarily be processed
before j.

* One can thus see any problem with m machines like the search for an optimum
m-partition of all the jobs, taking into account this order

* In the 2-machine case, we search for an optimal partition in two subsets of the
set of jobs

L]
::EDF 14/11/2019, TERATEC QUANTUM COMPUTING INITIATIVE M Porcheron EDF-R&D 17



Minimization of total charging time

Reduction to Max-Cut problems

* In the 2-machine case : P,| |2 w;C;

e Let G=(V,E) be the complete graph whose the n vertices in V correspond to
the n jobs in J.

* We define a weight on each edge (i,j) by :
Wij = min{wipj; iji}
* This implements a total order relation on the jobs :
k <jsik #jet P¥/y,, < p]/w]
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Minimization of total charging time

Reduction to Max-Cut problems

* We show that for every partition of V into two subsets (S, V\S) :

Z WU+ZW]pJ ZW]C-l- Z Wi

1<i<jsn LES,JEV\S
* Y. icicy W;iiS aconstant term representlng the sum of the weights of all the edges of E
Isisjsn "'

}f‘ 1 Wjpj is a constant term representing the sum of the weighted durations of all jobs in V
_1 W;(j is the total completion time that we want to minimize

. ZlES,]EV\S w;; is the weight of the edges of which one vertex is in S and the other in V\S, i.e. the
weight of the cut associated with the partition/assignment (S, V\S)

» > Minimising X.%_; w;C; is thus equivalent to finding the cut (S, V\S) such
that Yies jer\s Wij is maximal
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Minimization of total charging time

Reduction to Max-Cut problems

P ||Z]E]W C; & Max-Cut |

* The approach generalizes to m machines :
*P, 112y w;jCj < Max-m-Cut !
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CED

From smart-charging problems to graph-
theory problems

Minimization of total charging time =» Max-Cut

Minimization of the number of charging stations =» Max Independent Set
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Minimization of the number of charging stations

Interval Scheduling Problems

* A set of intervals representing tasks to be performed whose start dates are
known in addition to their durations

* Two intervals of tasks overlap if their intersection is not empty.

* A set of machines. Each machine can only perform one task at a time and is
always available.

* Atask runs only on one machine, and can not be interrupted to be
resumed later, possibly on another machine (no preemption)

* The problem is to perform all the tasks using a minimum of machines, i.e.
to find a task assignment to the machines such that no pair of tasks
assigned to the same machine overlaps, while minimizing the number of
machines used

* basic version, many variants
* ~ Facility location / covering problems
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Minimization of the number of charging stations

Reduction to MIS problems

* Consider an Interval graph whose vertices are the tasks and such that
there is an edge between two vertices if the intervals associated with
their tasks overlap

* The basic version of the interval scheduling problem is to find a
coloring of this graph, its chromatic number corresponding to the
minimum number of machines needed to schedule all the tasks.

* Finding the maximum stable (MIS) of this graph is equivalent to
finding the maximum set of tasks that can be executed on the same
machine (no overlapping)

* Note that there are approximate algorithms determining a coloring
from an enumeration of MIS
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Minimization of the number of charging stations

Modelling

 \We consider a time horizon T

e We associate with each EV v a task defined as a load interval on T:
[sc,ec,]

* We build an interval graph whose nodes are the load tasks of the EVs
and that there is an edge between two nodes iff their load intervals
overlap

* The MIS of this graph then gives the maximum set of loads achievable
on a given station

* A coloring of this graph provides the minimum number of stations
required for all the loads
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Minimization of the number of charging stations

Modelling

* We need not only load durations, but also load starting dates.

* These could be calculated on a price criterion by a very simple Linear
Integer Program, as below :

* Data
* Atime horizon [1, T] discretised in time steps t of equal duration dt (hours)
» A price A! for each time steps (€/kWh)
* Aload power PC (kW) assumed to be identical for all stations
* Acharge EC, (kwh) to be delivered to each v on the horizon
* From PC and EC, we deduce a load duration expressed in time steps, for each

ECy,
v:DC., =
UV pcxdt
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Modelling
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Variables
x,! = 1if vioad beginsin t, 0 if not

V(v,te[1,T]a,
= 1if t > starting time c% foad 0if not

t—DC, ,
v (vt €[1,T]) bL = {&re=1 Xv Sit >DCy
Osit <DC,

=1 if t > end time of vload, O if not

=V@wte[LT]c =al—bl=

Y _,xTsit <DC,

Zt—DCv T = Zt—DCv

t T
Z‘r:lxv T =1 v

= 1if t belongs to the load interval of v, O if not

14/11/2019, TERATEC QUANTUM COMPUTING INITIATIVE

T t T
=1 Xv + Z‘r=t—DCv+1 Xy — ZT=1

t_DCv

Minimization of the number of charging stations

a
b
c=a-b
DC
X |
—_\t :
v = Lr=t-DC,+1Xv Sit > DG,
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Minimization of the number of charging stations

Modelling

Constraints :

* For each vehicle v, a single charge on the horizon :V v, Y.I_, x! =

. Charges must be complete on the horlzon :
vu, X ctPcdt = EC, = YI_,ct = EC,/PCdt & YI_,c, = DC,

Objective : Min(x%,c% ){Zv > At dt}

Solving this problem provides the optimal load start dates according to the cost of each load over the
time horizon considered.
* Note that we can easily add constraints to this problem, such as:

Load date at the earliest, for example to take into account a minimum travel time to the stations;
Load date at the latest, for example to take into account expected future vehicle engagements;

Maximum number of parallel loads at a time : to limit the number of overlapping intervals with respect to the number of available stations

Associated with the charge durations, this makes it possible to build a graph of
intervals on which the specific techniques of graph coloration/MIS can apply
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From graph-theory problems to

guantum algorithms

Ongoing works in collaboration with :

Margarita Veshchzerova’s PhD thesis co-advised with E. Jeandel and Simon Perdrix, Loria/Mocqua Université de Nancy
Institut d’Optique/Atos/European Project PASQuanS (Programmable Atomic Large-Scale Quantum Simulation)

The start up Pasqal (spin off from Institut d’Optique)
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Minimization of total charging time

* Max-cut : a “classical” application of QAOA [Fahri et al 14]

e Our current research topic : QAOA from Max-cut to Max-m-cut

14/11/2019, TERATEC QUANTUM COMPUTING INITIATIVE M Porcheron EDF-R&D
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Minimization of the number of charging
stations

 MIS : QA, QAA, QAOA
* Very promising results obtained for Unit-Disk Graphs on quantum
devices using Rydberg atoms as qubits [Pichler et al 18]
e Results recently reproduced by the Atos team on the QLM
* A Unit-Disk Graph is such that two vertices are connected iif the distance
between themis<r
e Our current research topic: from graphs of overlapping load intervals
to Unit-Disk Graphs of Rydberg atoms arrays
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