Quantum algorithms for solving hard combinatorial optimization problems in the field of "smart-charging" of electrical vehicles
M. Porcheron, EDF-R\&D division

Plan

1. Smart-charging of electrical vehicles
2. From smart-charging problems to graph-theory problems thanks to an old and fruitful field of Operational Research : scheduling
3. From graph-theory problems to quantum algorithms

Smart-Charging of Electrical

 Vehicles
Smart-Charging

- Technologies that aim at optimizing charges/discharges of electrical vehicles
- « V1G » : form grid to vehicle
- Power is delivered in an unidirectional manner from grid to vehicle, to charge its battery
- Vehicle To Grid (« V2G ») : in both ways
- Energy stored in accumulators can also serve to power a building, or to regulate the grid
- Many constraints here !
- The high level of power required to load electrical vehicles, especially on fast load stations, compels to optimally modulate the load demand in time
- While satisfying needs of users, charging/discharging cycles of batteries, limits on available power delivered by the grid, reserves required to guaranty frequency stability, etc.

Smart-Charging

https://les-smartgrids.fr/dreev-edf-smart-charging-v2g/

How V2G Works

Some figures :

EDF ambition in Europe :

- 4000 smart load-stations installed in 2020
- 1.5 million of vehicles with a smart piloted load in 2035

Many difficult optimisation problems there :
When do we have to charge vehicles? How many load stations do we need ? ...

3 MAKE MONEY
by providing power capacity and sending energy back and forth to regulate the Grid

OR SAVE COSTS

by using stored energy from EV batteries to reduce buthding energy peak consumption

4 YOU'RE READY TO DRIVE with the charge you set for the day with advance trip planning using a mobile fleet management app

2 CHARGE BATTERY

2 safely and efficiently in V2C Mode

From smart-charging problems to graph-theory problems

thanks to an old and fruitful field of Operational Research : scheduling

Scheduling

- $\mathrm{J}=\{1$... n$\}$ jobs to execute on $\mathrm{I}=\{1 . . . \mathrm{m}\}$ machines
- At a given time step, one job performs on a single machine and a machine can only execute a single job
- A scheduling problem is described by a triplet : $\alpha|\beta| \gamma$
(Graham and Lawler classification [Graham Lawler et al 79])
- α : machine environment : single/multiple, parallel, uniform ...
- β : job characteristics : splitting (pre-emption) allowed or not, resource or precedence constraints, due dates ...
- γ : criteria to be minimized : total completion time, global makespan, lateness ...

- Examples

- 1|prec|Lmax : minimise maximum lateness on a single machine, subject to precedence constraints on the jobs
- $\mathrm{R}|\mathrm{pmtn}| \Sigma \mathrm{C}_{j}:$ minimise the total completion time on a variable number of unrelated machines, allowing pre-emption
- A huge bunch of applications.
- Manufacturing industry (job shop scheduling), logistics (timetables, project scheduling), transport (fleet and crew management), computing (jobs scheduling on parallel machines, cloud management ...)
- ... and around sixty years of researches on the subject !

Scheduling

- Complexity

- P : problems solvable in polynomial « time» (number of instructions) in the size of their data
- « Easy » tractable problems

Scheduling

- Complexity

- NP : problems for which no polynomial algorithm is known, but such that a solution can be verified in polynomial time
- NP-Hard : problems to which any problem in NP can be reduced in polynomial time
- NP-Complete : NP-Hard problems in NP

SINGLE MACHINE	PARALLEL MACHINES	SHOPS							
$\begin{aligned} & 1 \\| \sum w_{j} U_{j} \quad{ }^{(*)} \\ & \left.1\left\|r_{j}, p r m p\right\| \sum w_{j} U_{j} \quad{ }^{*}\right) \\ & \left.1 \\| \sum T_{j} \quad \quad^{*}\right) \end{aligned}$	$P 2 \\| C_{\max } \quad\left(^{*}\right)$ $P 2\left\|r_{j}, p r m p\right\| \sum C_{j}$ $P 2 \\| \sum w_{j} C_{j}\left({ }^{*}\right)$ $P 2 \mid r_{j}$, prmp $\mid \sum U_{j}$ $P m\|p r m p\| \sum w_{j} C_{j}$ $Q m \\| \sum w_{j} C_{j} \quad\left({ }^{*}\right)$ $R m\left\|r_{j}\right\| C_{\max } \quad\left({ }^{*}\right)$ $R m \\| \sum w_{j} U_{j}\left({ }^{*}\right)$ $R m\|p r m p\| \sum w_{j} U_{j}$	$\begin{aligned} & O 2\|p r m p\| \sum C_{j} \\ & O 3 \\| C_{\max } \\ & O 3\left\|\sum r m p\right\| \sum w_{j} U_{j} \end{aligned}$							

Table E. 2 NP-Hard Problems in the Ordinary Sense

Scheduling

- A very (very) large number of conventional algorithms are available
- Exact in the (pseudo-)polynomial case (e.g. dynamic programming), or for reduced instances in strong NP (e.g. Branch\&Bound for linear formulations)
- Approximate : based on linear or semi-definite positive relaxations
- Probabilistic, in general in BPP (Bounded-error Probabilistic Polynomial time) : probability of success $\geq 2 / 3$, probability of fail $\leq 1 / 3$
- Heuristic : greedy algorithms, genetic algorithms, local search, constraint programming...
- What about quantum algorithms?
- Well, to begin, they'll have to challenge the above dream team of conventional algorithms !
- Grover : quadratic speedup on any problem in NP with respect to a "brute force" exhaustive search
- Many scheduling problems can be formulated as Binary Quadratic Optimisation Problems (QUBO) \rightarrow Quantum Annealing (QA), Quantum Adiabatic Computing (QAA) and Quantum Approximate Optimisation Algorithm (QAOA) are good candidates
- Scheduling is often a matter of graphs ...

From smart-charging problems to graphtheory problems

Minimization of total charging time \rightarrow Max-Cut
Minimization of the number of charging stations \rightarrow Max Independent Set

Modelling

- $J=\{1 \ldots \mathrm{n}\}$ jobs of charge of n electrical vehicles, on a set $\mathrm{I}=\{1 \ldots \mathrm{~m}\}$ of «parallel » charge stations
- The completion time of a load j is noted C_{j}. We try to minimize the total time of completion of the charges $\sum_{j \in J} w_{j} C_{j}$, where w_{j} represents a non-negative integer weight associated with job j measuring its importance/priority
- For example, we want to prioritize the charge of safety-related intervention vehicles.
- In standard scheduling notation, this is : $\mathrm{P}_{\mathrm{m}}| | \sum_{j \in J} w_{j} C_{j}$

Hypotheses

- Each load must be run on a station and can be on any of them, and a station can only perform one charge at a time
- Stations are considered identical : the charging duration $p_{i j}$ of vehicle j on station i is the same whatever the station is, i.e. $p_{i j}=\boldsymbol{p}_{j}$
- We neglect possible resource constraints (maximum number of charging stations operating in parallel, maximum number of loads performed by a station, for example) and "early or late date" constraints on the completion of the load jobs
- Load tasks are considered non-preemptive, i.e. can not be interrupted to be resumed later.
- That is to say that a charge is entirely performed on the same station, without being interrupted.
- Note that problems without preemption are generally more difficult than with (less degrees of freedom)

Complexity

- $1 \| \sum_{j \in J} \boldsymbol{w}_{\boldsymbol{j}} \boldsymbol{C}_{\boldsymbol{j}}:$ problem with one machine (and its derivatives) can be solved in n. $\log (n)$
- Smith's Rule : schedule jobs in non-increasing order of w_{j} / p_{j}. Intuitively, this amounts to postponing the longest jobs at the latest (weighting the duration by the priority w_{j}); this avoids accumulating their durations in the sum of the completion times of the others
- $\mathrm{P}_{\mathrm{m}} \| \sum_{j \in J} C_{j}$: problem with m identical parallel machines and $w_{j}=1$, i.e. no "priority" on the jobs, can also be solved in $n . \log (n)$ by a generalization of the Smith's rule above
- $\mathrm{P}_{\mathrm{m}} \| \sum_{j \in J} \boldsymbol{w}_{j} C_{j}:$ NP-Hard!
- Numerous classical approximation algorithms based on relaxations of the IP or SDP formulations, and on various (meta-)heuristics

Reduction to Max-Cut problems

- We notice that once the jobs are assigned to the machines, the optimal scheduling consists of scheduling the jobs on each machine according to the non-decreasing order given by p_{j} / w_{j}
- Thus, the optimal order to apply in any solution may be predetermined : $k<j$ iff $k \neq j$ and ${ }^{p_{k} / w_{k}} \leq^{p_{j}} / w_{j}$
- If $k<j$ and k and j are assigned to the same machine, then k will necessarily be processed before j.
- One can thus see any problem with m machines like the search for an optimum m-partition of all the jobs, taking into account this order
- In the 2-machine case, we search for an optimal partition in two subsets of the set of jobs

Reduction to Max-Cut problems

- In the 2-machine case: $\mathrm{P}_{2} \| \sum_{j \in J} w_{j} C_{j}$
- Let $G=(V, E)$ be the complete graph whose the n vertices in V correspond to the n jobs in J.
- We define a weight on each edge (i, j) by :

$$
w_{i j}=\min \left\{w_{i} p_{j} ; w_{j} p_{i}\right\}
$$

- This implements a total order relation on the jobs:

$$
k \prec j \text { si } k \neq j \text { et }{ }^{p_{k}} / w_{k} \leq^{p_{j}} / w_{j}
$$

Reduction to Max-Cut problems

- We show that for every partition of V into two subsets $(S, V \backslash S)$:

$$
\sum_{1 \leq i \leq j \leq n} w_{i j}+\sum_{j=1}^{n} w_{j} p_{j}=\sum_{j=1}^{n} w_{j} C_{j}+\sum_{i \in S, j \in V \backslash S} w_{i j}
$$

- $\sum_{1 \leq i \leq j \leq n} w_{i j}$ is a constant term representing the sum of the weights of all the edges of E
- $\sum_{j=1}^{n} w_{j} p_{j}$ is a constant term representing the sum of the weighted durations of all jobs in V
- $\sum_{j=1}^{n} w_{j} C_{j}$ is the total completion time that we want to minimize
- $\sum_{i \in S, j \in V \backslash S} w_{i j}$ is the weight of the edges of which one vertex is in S and the other in $V \backslash S$, i.e. the weight of the cut associated with the partition/assignment ($\mathrm{S}, \mathrm{V} \backslash \mathrm{S}$)
\rightarrow Minimising $\sum_{j=1}^{n} w_{j} C_{j}$ is thus equivalent to finding the cut $(\mathrm{S}, \mathrm{V} \backslash \mathrm{S})$ such that $\sum_{i \in S, j \in V \backslash S} w_{i j}$ is maximal

Reduction to Max-Cut problems

$\bullet \mathrm{P}_{2}| | \sum_{j \in J} w_{j} C_{j} \Leftrightarrow$ Max-Cut!
-The approach generalizes to m machines :

- $\mathrm{P}_{\mathrm{m}}| | \sum_{j \in J} w_{j} C_{j} \Leftrightarrow$ Max-m-Cut !

From smart-charging problems to graphtheory problems
Minimization of total charging time \rightarrow Max-Cut
Minimization of the number of charging stations $\boldsymbol{\rightarrow}$ Max Independent Set

Interval Scheduling Problems

- A set of intervals representing tasks to be performed whose start dates are known in addition to their durations
- Two intervals of tasks overlap if their intersection is not empty.
- A set of machines. Each machine can only perform one task at a time and is always available.
- A task runs only on one machine, and can not be interrupted to be resumed later, possibly on another machine (no preemption)
- The problem is to perform all the tasks using a minimum of machines, i.e. to find a task assignment to the machines such that no pair of tasks assigned to the same machine overlaps, while minimizing the number of machines used
- basic version, many variants
- ~ Facility location / covering problems

Reduction to MIS problems

- Consider an Interval graph whose vertices are the tasks and such that there is an edge between two vertices if the intervals associated with their tasks overlap
- The basic version of the interval scheduling problem is to find a coloring of this graph, its chromatic number corresponding to the minimum number of machines needed to schedule all the tasks.
- Finding the maximum stable (MIS) of this graph is equivalent to finding the maximum set of tasks that can be executed on the same machine (no overlapping)
- Note that there are approximate algorithms determining a coloring from an enumeration of MIS

Modelling

- We consider a time horizon T
- We associate with each EV v a task defined as a load interval on T : [sc $c_{v} e c_{v}$]
- We build an interval graph whose nodes are the load tasks of the EVs and that there is an edge between two nodes iff their load intervals overlap
- The MIS of this graph then gives the maximum set of loads achievable on a given station
- A coloring of this graph provides the minimum number of stations required for all the loads

Modelling

- We need not only load durations, but also load starting dates.
- These could be calculated on a price criterion by a very simple Linear Integer Program, as below :
- Data
- A time horizon [1, T] discretised in time steps \boldsymbol{t} of equal duration $\boldsymbol{d t}$ (hours)
- A price λ^{t} for each time steps ($€ / k W h$)
- A load power PC (kW) assumed to be identical for all stations
- A charge $E C_{v}(\mathrm{kwh})$ to be delivered to each v on the horizon
- From $P C$ and $E C_{v}$ we deduce a load duration expressed in time steps, for each $v: \boldsymbol{D} \boldsymbol{C}_{v}=\frac{E C_{v}}{P C \times d t}$

Modelling

- Variables

- $\mathrm{x}_{\mathrm{v}}{ }^{\mathrm{t}}=1$ if v load begins in $t, 0$ if not
- $\forall(v, t \in[1, T]) a_{v}^{t}=\sum_{\tau=1}^{t} x_{v}^{\tau}$
$=1$ if $t \geq$ starting time of v load, 0 if not
- $\begin{aligned} & \forall(v, t \in[1, T]) b_{v}^{t}=\left\{\begin{array}{l}\Sigma_{\tau=1}^{t-D C_{v}} x_{v}^{\tau} \text { si } t>D C_{v} \\ 0 \text { si } t \leq D C_{v}\end{array}\right. \\ &=1 \text { if } t>\text { end time of } v \text { toad, } 0 \text { if not }\end{aligned}$

$\Rightarrow \forall(v, t \in[1, T]) c_{v}^{t}=a_{v}^{t}-b_{v}^{t}=$
• $\left\{\begin{array}{c}\sum_{\tau=1}^{t} \boldsymbol{x}_{v}^{\tau} \text { si } \boldsymbol{t} \leq \boldsymbol{D} \boldsymbol{C}_{v} \\ \sum_{\tau=1}^{t} x_{v}^{\tau}-\sum_{\tau=1}^{t-D C_{v}} x_{v}^{\tau}=\sum_{\tau=1}^{t-D C_{v}} x_{v}^{\tau}+\sum_{\tau=t-D C_{v}+1}^{t} x_{v}^{\tau}-\sum_{\tau=1}^{t--C_{v}} x_{v}^{\tau}=\sum_{\tau=t-\boldsymbol{D} \boldsymbol{C}_{v}+\mathbf{1}}^{t} \boldsymbol{x}_{v}^{\tau} \text { si } \boldsymbol{t}>\boldsymbol{D} \boldsymbol{C}_{v}\end{array}\right.$
$=1$ if t belongs to the load interval of $v, 0$ if not

Modelling

- Constraints :

- For each vehicle v, a single charge on the horizon : $\forall v, \sum_{t=1}^{T} x_{v}^{t}=1$
- Charges must be complete on the horizon :
$\forall v, \sum_{t=1}^{T} c_{v}^{t} P C d t=E C_{v} \Leftrightarrow \sum_{t=1}^{T} c_{v}^{t}=E C_{v} / P C d t \Leftrightarrow \sum_{t=1}^{T} c_{v}^{t}=D C_{v}$
- Objective : $\operatorname{Min}_{\left(x_{v}, c_{v}^{t}\right)}\left\{\sum_{v} \sum_{t=1}^{T} \lambda^{t} \boldsymbol{c}_{v}^{t} \boldsymbol{d t}\right\}$
- Solving this problem provides the optimal load start dates according to the cost of each load over the time horizon considered.
- Note that we can easily add constraints to this problem, such as:
- Load date at the earliest, for example to take into account a minimum travel time to the stations;
- Load date at the latest, for example to take into account expected future vehicle engagements;
- Maximum number of parallel loads at a time : to limit the number of overlapping intervals with respect to the number of available stations
- Associated with the charge durations, this makes it possible to build a graph of intervals on which the specific techniques of graph coloration/MIS can apply

From graph-theory problems to quantum algorithms

Ongoing works in collaboration with :

- Margarita Veshchzerova's PhD thesis co-advised with E. Jeandel and Simon Perdrix, Loria/Mocqua Université de Nancy
- Institut d'Optique/Atos/European Project PASQuanS (Programmable Atomic Large-Scale Quantum Simulation)
- The start up Pasqal (spin off from Institut d’Optique)

Minimization of total charging time

- Max-cut : a "classical" application of QAOA [Fahri et al 14]
- Our current research topic : QAOA from Max-cut to Max-m-cut

Minimization of the number of charging stations

\author{

- MIS : QA, QAA, QAOA
}
- Very promising results obtained for Unit-Disk Graphs on quantum devices using Rydberg atoms as qubits [Pichler et al 18]
- Results recently reproduced by the Atos team on the QLM
- A Unit-Disk Graph is such that two vertices are connected iif the distance between them is < r
- Our current research topic: from graphs of overlapping load intervals to Unit-Disk Graphs of Rydberg atoms arrays

References

- Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106, January 2000.
- Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel Preda. A quantum adiabatic evolution algorithm applied to instances of an NP-complete problem. Science, 292:5516, 2001
- Edward Farhi, Jeffrey Goldstone, Sam Gutmann. A Quantum Approximate Optimization Algorithm. arXiv:1411.4028v1. 2014
- R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:287-326, 1979
- Hannes Pichler, Sheng-Tao Wang, Leo Zhou, Soonwon Choi, and Mikhail D. Lukin. Quantum Optimization for Maximum Independent Set Using Rydberg Atom Arrays. arXiv:1808.10816v1 [quant-ph] 31 Aug 2018.
- Pinedo. Scheduling_Theory, Algorithms, and Systems Scheduling\Scheduling Theory, Algorithms, and Systems(Pinedo,2008).pdf
- Martin Skutella. Semidefinite relaxations for parallel machine scheduling. In Proceedings 39th Annual Symposium on Foundations of Computer Science. 1998. Scheduling\Semidefinite Relaxations for Parallel Machine Scheduling.pdf
- Heng Yang , Yinyu Ye , Jiawei Zhang. An approximation algorithm for scheduling two parallel machines with capacity constraints. Discrete Applied Mathematics 130 (2003) 449 - 46. Scheduling \backslash An approximation algorithm for scheduling two parallel machines with capacity constraints.pdf

Thank you!

