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Brief Introduction to Machine Learning

● Machine learning = fancy word for fitting a curve.

● We are looking for a function that maps a feature vector to a target label. Two ways:

➢ Using a physical model: Schrödinger’s, Sternheimer’s, Newton’s equation, etc. 

❖ Advantage : Large domain of validity. Extrapolation possible.

❖ Drawback: Impossible to solve analytically or numerically without approximations.

➢ Using machine learning. The model learns from examples.

❖ Advantage : Numerical solving is in principle exact. No approximation beside the form 

of the function (linear, polynomial, mix of linear and nonlinear, etc.).

❖ Drawback: Interpretability is difficult or impossible. No extrapolation.
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A Material Science Problem

● Some DFT calculations of materials properties are difficult or currently impossible.

● In particular, properties derived from successive derivatives of the total energy:

➢ Phonons, magnetic couplings, IR spectra (2nd derivatives).

➢ Thermal conductivity, Raman signals height (3rd derivative)

➢ Etc.

● Idea: Acceleration by calculating these properties with ML rather than DFT.

● Already used extensively for global (system-level) properties but scarse for local (atom-

level) properties.
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Graph Neural Networks

● For global properties, lots of models are available and work just fine.

● For local properties, best model (following a Kaggle competition) is a Graph Neural 

Network (GNN).

● How it works :

➢ The system is featurized into a graph: atoms = nodes, bonds = edges. 

➢ The graph goes through an interaction bloc, which updates every atoms with 

information about their environment  → Message Passing (or Information Diffusion) step. 

➢ The message passing step is repeated until the states of all atoms reach convergence.

➢ Once convergence is reached, the graph goes through a regression bloc, which 

calculates the desired property.
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Graph Neural Networks

● Unfolding a GNN  → Dense recurring neural network (RNN).

l
i
 : state of atom i l

(i,j)
 : state of bond between atom i and j

w : weight matrix. Contains information from environment (aka labels l
i
 and l

(i,j)
).

f
w
 : local transition function, parameterized by w. Updates states of atoms. 

g
w
 : local output function, parameterized by w. Calculates the desired property.
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So What?

● Timings:

➢ Training of the GNN: 3-4 days. 

➢ Inference: < 1 ms.

 → Training time is incompatible with active learning.

● In principle, QC could provide exponential speedups for the following ML methods and 

models:

➢ Principle component analysis (PCA): exploratory data method that reduces feature 

dimensions. 

➢ Bayesian inference: inference based on Bayes conditional probabilities.

➢ Support Vector Machine (SVM): ML method based on the projection of features in lower 

or higher dimensional vector spaces. Extensively used in materials science.

➢ Recommendation systems: systems that suggest which movie you should see next.

➢ And more...
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So What?

● Solution 1: hybrid approach. Classical GNN with quantum optimizations.

● Solution 2: quantum GNN  → quantum RNN  quantum ANN (q-NN).→ 

● Problem with current realizations for q-NN: based on qubits, which are a discrete unit of 

information  → measurement output is discrete. 

➢ OK for discrete variables (e.g. binary or multi-class/multi-label classification).

➢ NOT OK for continuous variables (e.g. regression on forces on atoms, vibrational 

frequencies, etc.).

➢ No easy extension to convolutional NN (images) or recurrent NN (times series).

● One solution: the continuous variable q-NN, based on continuous variable information [1,2] .

➢ « Easy » extension to CNN and advanced RNN.

➢ Though a different paradigm, circuits can be implemented in the qubits approach.

➢ Can be used for discrete variables.

[1] Weedbrook et al., Rev. Mod. Phys. 84, 621 (2012)
[2] Killoran et al., arXiv e-print arXiv:1806.06871v1 (2018)
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Continuous Variable information

● Quantum information comes in two forms :

➢ Discrete, aka the qubit. Examples: spin 1/2 particles, energy states of quantum dots, 

quantized superconducting circuits.

➢ Continuous. Example: quantum harmonic oscillator. Representative systems: 

quantization of electromagnetic field (photons) and vibrational modes of solids 

(phonons).

● Primary tools: Gaussian states and Gaussian transformations.

➢ Gaussian states: represented by Gaussian functions.

➢ Gaussian transformations: map Gaussian states to Gaussian states.

● Gaussian formalism extensively used by quantum optics (QO) community.

● Mapping between discrete/continuous approach :

➢ Number of modes in a Gaussian state (qumodes)  Number of qubits. ↔ Number of qubits. 

➢ Gaussian unitaries  quantum gates.↔ Number of qubits. 
● All Gaussian unitaries have experimental counterparts in quantum optics.
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Continuous Variable q-NN

● Feedforward neural network = a big pile of linear algebra = matrix multiplication.

● When units are activated, two things happen: matrix multiplication and nonlinear 

transformation.

● Therefore, one layer of a quantum NN needs to perform the following classical operation: 
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Continuous Variable q-NN

● Affine transformation                  :

➢ Singular value decomposition: break linear operator W into simpler parts.

➢ This can be achieved with the following quantum operations:

W⋅X+b

D∘U 2∘S ∘U 1

W=O2⋅D⋅O1

O1∈On×k (ℝ)

D∈Dk×k (ℝ)

O2∈Ok×m(ℝ)
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Continuous Variable q-NN

● Affine transformation                  :

➢ Singular value decomposition: break linear operator W into simpler parts.

This can be achieved with the following quantum operations:

➢ N-mode Interferometers:

✗ QO: device to measure small phase shifts. 

✗ QC: combination of 2-mode beamsplitters and single-mode phase shifters. 

Applying an interferometer is equivalent to multiplying by an orthogonal matrix.

W⋅X+b

W=O2⋅D⋅O1

O1∈On×k (ℝ)

D∈Dk×k (ℝ)

O2∈Ok×m(ℝ)

D∘U 2∘S ∘U 1
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Continuous Variable q-NN

● Affine transformation                  :

➢ Singular value decomposition: break linear operator W into simpler parts.

This can be achieved with the following quantum operations:

➢ Single-mode Squeezing:

✗ QO: photons splitting in a nonlinear crystal. More photons  squeezed.→ 

✗ QC:  apply a positive or negative scaling to a mode.

Applying a squeezing gate is equivalent to multiplying by a diagonal matrix.

W⋅X+b

D∘U 2∘S ∘U 1

W=O2⋅D⋅O1

O1∈On×k (ℝ)

D∈Dk×k (ℝ)

O2∈Ok×m(ℝ)
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Continuous Variable q-NN

● Affine transformation                  :

➢ Singular value decomposition: break linear operator W into simpler parts.

This can be achieved with the following quantum operations:

➢ Single-mode Displacement :

✗ QO: displacement of a state.

✗ QC: displacement of a state.

Applying the displacement operator is equivalent to adding a vector.

W⋅X+b

D∘U 2∘S ∘U 1

W=O2⋅D⋅O1

O1∈On×k (ℝ)

D∈Dk×k (ℝ)

O2∈Ok×m(ℝ)
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Continuous Variable q-NN

● Affine transformation                  :

➢ Singular value decomposition: break linear operator W into simpler parts.

➢ This can be achieved with the following quantum operations:

● Nonlinear transformation: use of a non-Gaussian transformation.

✗ QO: the nonlinear Kerr effect. A Kerr medium has an index of refraction that is 

proportional to the total intensity of light going through.

✗ QC: the nonlinear Kerr gate.

W⋅X+b

D∘U 2∘S ∘U 1|x ⟩=|W⋅X+d ⟩

W=O2⋅D⋅O1

O1∈On×k (ℝ)

D∈Dk×k (ℝ)

O2∈Ok×m(ℝ)
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Continuous Variable q-NN

● Summary:

● Layer with 1 qumode :

● Layer with 2 qumodes:
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Ending Thoughts

● Go through continuous variable measurements. Most common measurement is homodyne 

detection :

✗ QO: beamsplitter + photodectectors.

✗ QC: integrals.

● Implement the 1 layer circuit, that is:

➢ Is PyQASM designed for continuous variables?

➢ Implement custom gates: interferometers (beamsplitters and phase shifters), detection 

gate, squeezing gate, nonlinear Kerr gate.

➢ Implement custom measurements: homodyne detection.

● Translate a simple classification task in the quantum equivalent. 

● Run the circuit.

● Realization of a optical photon quantum computer? [1]

➢ Single photons are easy to generate.

➢ Single qumode operations are possible.

➢ Main drawback: making photons interact (through the Kerr medium) is difficult

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information
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