Managing Big but also Fast data with CEP

Gibert Philippe - Orange/OLNC June $26^{\rm th}$ 2013 , Forum Teratec - Big Data & HPC

- Background
- Why Big Data?
- Why Fast Data?
- Why Big + Fast ?
- Key issues
- Use Cases
- Work in progress
- Conclusion
- References

Background

- the Orange Group (March 2013):
 - •170,000 employees worldwide (104,000 employees in France)
 - •172 million mobile customers
 - •15 million broadband internet (ADSL, fibre) customers
- entity OLNC/OLPS → R&D:
 - Products & Services Development (LBpro , PABX, M2M)
 - Research
 - MW & Platforms for Big & Fast Data,
 - Complex Event Processing (CEP)
 - Event oriented platforms

Telecom Context

- tons of Data and Events:
 - generated by Telco's Products and Services
 - → billing, CDRs, internet, OTTs, Social Networks
 - → smarphones sensors, M2M devices, RT devices
- quick evolution in a few years :
 - traditional SGBD → Big Data MW (Open Source, large community)
 - traditional Analytics → Real Time Analytics
- challenge
 - adapt the legacy Platforms, Services and Applications to these Big Data and RT constraints
 - deliver the famous (infamous ?) Added Value ...

- Background
- Why Big Data?
- Why Fast Data?
- Why Big + Fast?
- Key issues
- Use Cases
- Work in progress
- Conclusion
- References

- Background
- Why Big Data?
- Why Fast Data?
- Why Big + Fast ?
- Key issues
- Use Cases
- Work in progress
- Conclusion
- References

- "Real-Time" feature has a high potential value
- traditional Business Intelligence (BI) → deferred analysis
- emerging technologies dealing with Real-Time BI
 - mine huge amounts of structured & unstructured data streams,
 - correlate complex events in RT,
 - improve business & operation processes & proactivity.
- no "turn-key" product in the market today → integration is needed

Promising Use cases

- churn prevention (critical situation detection, customer immersive marketing),
- customised charging and policy control, RT differentiated QoS,
- improved Product Launch:
 - •Improved confidence of end users to take up new products
 - •Faster product revenue achievements
- improved Customer Information:
 - •Real-time information on customer behaviour
 - •Optimisation of marketing & sales strategy

- Background
- Why Big Data?
- Why Fast Data?
- Why Big + Fast ?
- Key issues
- Use Cases
- Work in progress
- Conclusion
- References

• I am trying to join a colleague by phone many times with no success.

The Platform detects that he was just twitting 1 before. I receive a SMS recommendation telling me to contact him through

Residentials 3 minutes, report problems of disconnection from the ADSL. The Platform detects the situation and proactively reports an added value Event to the Help Desk.

Enterprise → Fast + Big

I am in front of the Orange Shop. My nephew bought 3 months 1 ar a

. His birthday is tomorrow. The Plant m detects the situation

and recommends me to buy a gift for him

- Background
- Why Big Data?
- Why Fast Data?
- Why Big + Fast ?
- Key issues
- Use Cases
- Work in progress
- Conclusion
- References

Key issues - Big + Fast Ecosytem

PLAY

- deliver an elastic and reliable architecture for dynamic and complex,
 event-driven interaction in large highly distributed and heterogeneous
 service systems
- FP7 STREP project (October 2010 → October 2013)
- http://www.play-project.eu/

SocEDA

- deliver an elastic and reliable architecture for dynamic and complex,
 event-driven interaction in large highly distributed and heterogeneous
 service systems + design tools
- ANR project (November 2010 → November 2013)
- https://research.linagora.com/display/soceda/SocEDA+Overview

Keywords

- Stream Processing and CEP
- CEP with good EPL
- Scalability, Fault tolerance
- Hadoop Ecosystem
- Publish and Subscribe
- Fast Middleware
- Join Fast and Big Requests
- Big + Fast Architecture
- Performances

- Background
- Why Big Data?
- Why Fast Data?
- Why Big + Fast ?
- Key issues
- Use Cases
- Work in progress
- Conclusion
- References

Use Cases - CEM

Events from Probes Stream of **Big** DATA Fast DATA **Customer Events** Rules **EsperTech** CEP Engine

Table **Devices** (brand, model)

> Table Cells (.....)

Help desk

Rules

- Identify a wrong configuration for a service
- identify a missing event on an event stream
- identify an error related to the terminal

Query 1

Which Orange Customers are able to **definitively** receive a visual message from the shop window?

→ Near RealTime data

Query 2

Which Orange Customers are able to enter the shop within 30 sec?

→Batch data +

Near RealTime data

Classification

Near RealTime data: they just arrived near the store

Batch data: they are there since a while but no Geolocation from them in the short past

Future data: they are going in the direction of the store

Query 3

Which Orange Customers are able to enter the shop within 3 min?

- → Batch data + Near RealTime data
- + Future data

Big + Fast Data

- Background
- Why Big Data?
- Why Fast Data?
- Why Big + Fast ?
- Key issues
- Use Cases
- Work in progress
- Conclusion
- References

Technologies

CEP technology

- high throughput between 1,000 to 100k messages per second
- low latency react in real-time to conditions (from Msec to secs)
- complex computations detect patterns among events (event correlation), filter events, aggregate time or length windows of events, join event streams, trigger based on absence of events etc.

reactive MW

- fault tolerant, elastic, scalable
- able to integrate technologies, language agnostic
- open source

Work in progress

- challenge platforms
 - PLAY, Soceda
 - Event oriented MW (Storm, Esper, pub/sub MOM)
 - Other Big + Fast MW (revised SOTAs)
- next steps
 - describe functional and non functional requirements
 - implement relevant Use Cases
 - assess chosen platform (performances, scalability)

- Background
- Why Big Data?
- Why Fast Data?
- Why Big + Fast ?
- Key issues
- Use Cases
- Work in progress
- Conclusion
- References

Conclusion

- actors (residential & enterprise market), projects are constrained by a quick and accurate answer
- to develop these RT Added Value Apps
 - a Big Data Approach is mandatory
 - with traditional BI tools
 - but also
 - •with special Fast Data MW adapted to RT or Near RT constraints
 - •with BI tools adapted to these constraints
- \blacksquare some promising technologies, projects (open source oriented) are progressing on that $\ \ \odot$

Play Project http://www.play-project.eu/

Soceda Project https://research.linagora.com/display/soceda

Orange Labs http://www.primezone.orange-labs.com/

Storm
<u>http://storm-project.net/</u>

Esper http://esper.codehaus.org/

